Constitutive IL-2 mRNA expression in lymphocytes, infected with the intracellular parasite Theileria parva. 1992

V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
University of Bern, Department of Parasitology, Switzerland.

Theileria parva-infected lymphoblastoid cell lines of T or B cell origin were examined for IL-2 mRNA expression. T. parva-infected T cell lines could be of the CD4-CD8-, CD4+CD8-, CD4-CD8+, or CD4+CD8+ phenotype and express alpha beta or gamma delta TCR. By Northern blot analysis and amplification by the polymerase chain reaction, IL-2 mRNA could be detected in all T. parva-infected cell lines tested. IL-2 mRNA expression was also shown to be dependent on the continuous presence of the parasite in the host cell cytoplasm, because elimination of the parasite by treatment of T. parva-infected cell cultures with the theilericidal drug BW720c resulted in the disappearance of detectable IL-2 mRNA. The effect of anti-IL-2 antibodies on the proliferation of T. parva-infected cells was also tested. Inhibition experiments suggest that although IL-2 mRNA can be detected in all cell lines tested, not all T. parva-infected cell lines are dependent on IL-2 for their proliferation. Our data provide the first example for the constitutive expression of IL-2 mRNA in T and B cells caused by infection with an intracellular parasite.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013801 Theileriasis Infection of cattle, sheep, or goats with protozoa of the genus THEILERIA. This infection results in an acute or chronic febrile condition. Corridor Disease,East Coast Fever,Theileriosis,Coast Fever, East,Disease, Corridor,Fever, East Coast,Theileriases,Theilerioses
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
June 1999, Proceedings of the National Academy of Sciences of the United States of America,
V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
December 1998, Veterinary parasitology,
V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
April 1989, European journal of immunology,
V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
July 1988, Parasite immunology,
V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
April 1989, Molecular and biochemical parasitology,
V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
January 2021, Frontiers in cellular and infection microbiology,
V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
August 1989, Experimental parasitology,
V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
May 1999, Infection and immunity,
V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
November 1989, Molecular and cellular biology,
V T Heussler, and M Eichhorn, and R Reeves, and N S Magnuson, and R O Williams, and D A Dobbelaere
February 1991, Genetika,
Copied contents to your clipboard!