Association of glycosphingolipids with intermediate filaments of mesenchymal, epithelial, glial, and muscle cells. 1992

B K Gillard, and L T Thurmon, and D M Marcus
Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

We reported recently that two glycosphingolipids (GSLs), globoside (Gb4) and ganglioside GM3, colocalized with vimentin intermediate filaments of human umbilical vein endothelial cells. To determine whether this association is unique to endothelial cells or to vimentin, we analyzed a variety of cell types. Double-label immunofluorescent staining of fixed, permeabilized cells, with and without colcemid treatment, was performed with antibodies against glycolipids and intermediate filaments. Globoside colocalized with vimentin in human and mouse fibroblasts, with desmin in smooth muscle cells, with keratin in keratinocytes and hepatoma cells, and with glial fibrillary acidic protein (GFAP) in glial cells. Globoside colocalization was detected only with vimentin in MDCK and HeLa cells, which contain separate vimentin and keratin networks. GM3 ganglioside also colocalized with vimentin in human fibroblasts. Association of other GSLs with intermediate filaments was not detected by immunofluorescence, but all cell GSLs were detected in cytoskeletal fractions of metabolically labelled endothelial cells. These observations indicate that globoside colocalizes with vimentin, desmin, kertain and GFAP, with a preference for vimentin in cells that contain both vimentin and keratin networks. The nature of the association is not yet known. Globoside and GM3 may be present in vesicles associated with intermediate filaments (IF), or bound directly to IF or IF associated proteins. The prevalence of this association suggests that colocalization of globoside with the intermediate filament network has functional significance. We are investigating the possibility that intermediate filaments participate in the intracellular transport and sorting of glycosphingolipids.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast

Related Publications

B K Gillard, and L T Thurmon, and D M Marcus
December 1998, Biochimica et biophysica acta,
B K Gillard, and L T Thurmon, and D M Marcus
June 1986, The Journal of cell biology,
B K Gillard, and L T Thurmon, and D M Marcus
January 1980, Neuropathology and applied neurobiology,
B K Gillard, and L T Thurmon, and D M Marcus
August 1998, Experimental cell research,
B K Gillard, and L T Thurmon, and D M Marcus
January 1982, Pathology, research and practice,
B K Gillard, and L T Thurmon, and D M Marcus
January 1980, Results and problems in cell differentiation,
B K Gillard, and L T Thurmon, and D M Marcus
September 2005, Molecular biology of the cell,
B K Gillard, and L T Thurmon, and D M Marcus
June 1979, Acta neuropathologica,
B K Gillard, and L T Thurmon, and D M Marcus
November 1999, Experimental cell research,
Copied contents to your clipboard!