Intermediate filaments in muscle and epithelial cells of nematodes. 1986

E Bartnik, and M Osborn, and K Weber

Current concepts of the developmentally controlled multigene family of intermediate filament (IF) proteins expect the origin of their complexity in evolutionary precursors preceding all vertebrate classes. Among invertebrates, however, firm ultrastructural as well as molecular documentation of IFs is restricted to some giant axons and to epithelia of a few molluscs and annelids. As Ascaris lumbricoides is easily dissected into clean tissues, IF expression in this large nematode was analyzed by electron microscopic and biochemical procedures and a monoclonal antibody reacting with all mammalian IF proteins. We document for the first time the presence of IFs in muscle cells of an invertebrate. They occur in three muscle types (irregular striated pharynx muscle, obliquely striated body muscle, uterus smooth muscle). IFs are also found in the epithelia studied (syncytial epidermis, intestine, ovary, testis). Immunoblots on muscles, pharynx, intestine, uterus, and epidermis identify a pair of polypeptides (with apparent molecular masses of 71 and 63 kD) as IF constituents. In vitro reconstitution of filaments was obtained with the proteins purified from body muscle. In the small nematode Caenorhabditis elegans IF proteins are so far found only in the massive desmosome-anchored tonofilament bundles which traverse a special epithelial cell type, the marginal cells of the pharynx. We speculate that IFs may occur in most but perhaps not all invertebrates and that they may not occur in all cells in large amounts. As electron micrographs of the epidermis of a planarian--a member of the Platyhelminthes--reveal IFs, the evolutionary origin of this cytoplasmic structure can be expected either among the lowest metazoa or already in some unicellular eukaryotes.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009348 Nematoda A phylum of unsegmented helminths with fundamental bilateral symmetry and secondary triradiate symmetry of the oral and esophageal structures. Many species are parasites. Phasmidia,Secernentea,Sipunculida
D010932 Planarians Nonparasitic free-living flatworms of the class Turbellaria. The most common genera are Dugesia, formerly Planaria, which lives in water, and Bipalium, which lives on land. Geoplana occurs in South America and California. Dugesia,Dugesias,Planarian
D002107 Caenorhabditis A genus of small free-living nematodes. Two species, CAENORHABDITIS ELEGANS and C. briggsae are much used in studies of genetics, development, aging, muscle chemistry, and neuroanatomy. Caenorhabditides
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

E Bartnik, and M Osborn, and K Weber
January 1980, Results and problems in cell differentiation,
E Bartnik, and M Osborn, and K Weber
January 1992, Cell motility and the cytoskeleton,
E Bartnik, and M Osborn, and K Weber
January 1982, Methods in cell biology,
E Bartnik, and M Osborn, and K Weber
September 1991, Shi yan sheng wu xue bao,
E Bartnik, and M Osborn, and K Weber
April 2008, American journal of physiology. Cell physiology,
E Bartnik, and M Osborn, and K Weber
September 2005, Molecular biology of the cell,
E Bartnik, and M Osborn, and K Weber
August 1986, Clinical immunology and immunopathology,
E Bartnik, and M Osborn, and K Weber
January 1979, Journal of electron microscopy,
Copied contents to your clipboard!