Lipoamide dehydrogenase from Azotobacter vinelandii. The role of the C-terminus in catalysis and dimer stabilization. 1992

J Benen, and W van Berkel, and C Veeger, and A de Kok
Department of Biochemistry, Agricultural University, Wageningen, The Netherlands.

The 10 C-terminal residues are not visible in the crystal structure of lipoamide dehydrogenase from Azotobacter vinelandii, but can be observed in the crystal structures of the lipoamide dehydrogenases from Pseudomonas putida and Pseudomonas fluorescens. In these structures, the C-terminus folds back towards the active site and is involved in interactions with the other subunit. The function of the C-terminus of lipoamide dehydrogenase from A. vinelandii was studied by deletion of 5, 9 and 14 residues, respectively. Deletion of the last 5 residues does not influence the catalytic properties and conformational stability (thermoinactivation and unfolding by guanidinium hydrochloride). Removal of 9 residues results in an enzyme (enzyme delta 9) showing decreased conformational stability and high sensitivity toward inhibition by NADH. These features are even more pronounced after deletion of 14 residues (enzyme delta 14). In addition Tyr16, conserved in all lipoamide dehydrogenases sequenced thus far, and shown from the other structures to be likely to be involved in subunit interaction, was replaced by Phe and Ser. Mutation of Tyr16 also results in a strongly increased sensitivity toward inhibition by NADH. The conformational stability of both Tyr16-mutated enzymes is comparable to enzyme delta 9. The results strongly indicate that a hydrogen bridge between tyrosine of one subunit (Tyr16 in the A. vinelandii sequence) and histidine of the other subunit (His470 in the A. vinelandii sequence), exists in the A. vinelandii enzyme. In the delta 9 and delta 14 enzymes this interaction is abolished. It is concluded that this interaction mediates the redox properties of the FAD via the conformation of the C-terminus containing residues 450-470.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008058 Dihydrolipoamide Dehydrogenase A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES. Lipoamide Dehydrogenase,NAD Diaphorase,NADH Diaphorase,Diaphorase (Lipoamide Dehydrogenase),Dihydrolipoyl Dehydrogenase,Glycine Decarboxylase Complex L-Protein,L-Protein, Glycine Decarboxylase Complex,Lipoamide Dehydrogenase, Valine,Lipoic Acid Dehydrogenase,Lipoyl Dehydrogenase,Valine Lipoamide Dehydrogenase,Dehydrogenase, Dihydrolipoamide,Dehydrogenase, Dihydrolipoyl,Dehydrogenase, Lipoamide,Dehydrogenase, Lipoic Acid,Dehydrogenase, Lipoyl,Dehydrogenase, Valine Lipoamide,Diaphorase, NAD,Diaphorase, NADH,Glycine Decarboxylase Complex L Protein
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013057 Spectrum Analysis The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Spectroscopy,Analysis, Spectrum,Spectrometry
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan

Related Publications

J Benen, and W van Berkel, and C Veeger, and A de Kok
April 1983, Journal of molecular biology,
J Benen, and W van Berkel, and C Veeger, and A de Kok
December 1991, European journal of biochemistry,
J Benen, and W van Berkel, and C Veeger, and A de Kok
March 1988, European journal of biochemistry,
J Benen, and W van Berkel, and C Veeger, and A de Kok
January 1982, Annals of the New York Academy of Sciences,
J Benen, and W van Berkel, and C Veeger, and A de Kok
November 1975, European journal of biochemistry,
J Benen, and W van Berkel, and C Veeger, and A de Kok
October 1964, Doklady Akademii nauk SSSR,
J Benen, and W van Berkel, and C Veeger, and A de Kok
November 1954, Journal of bacteriology,
Copied contents to your clipboard!