The conformational stability of the redox states of lipoamide dehydrogenase from Azotobacter vinelandii. 1991

W J van Berkel, and A G Regelink, and J J Beintema, and A de Kok
Department of Biochemistry, Agricultural University, Wageningen, The Netherlands.

The conformational stability of holo-lipoamide and apo-lipoamide dehydrogenase from Azotobacter vinelandii was studied by thermoinactivation, unfolding and limited proteolysis. The oxidized holoenzyme is thermostable, showing a melting temperature, tm = 80 degrees C. The thermal stability of the holoenzyme drastically decreases upon reduction. Unlike the oxidized and lipoamide two-electron reduced enzyme species, the NADH four-electron reduced enzyme is highly sensitive to unfolding by urea. Loss of energy transfer from Trp199 to flavin reflects the unfolding of the oxidized holoenzyme by guanidine hydrochloride. Unfolding of the monomeric apoenzyme is a rapid fully reversible process, following a simple two-state mechanism. The oxidized and two-electron reduced holoenzyme are resistant to limited proteolysis by trypsin and endoproteinase Glu-C. Upon cleavage of the apoenzyme or four-electron reduced holoenzyme by both proteases, large peptide fragments (molecular mass greater than 40 kDa) are transiently produced. Sequence studies show that limited trypsinolysis of the NADH-reduced enzyme starts mainly at the C-terminus of Arg391. In the apoenzyme, limited proteolysis by endoproteinase Glu-C starts from the C-terminus at the carboxyl ends of Glu459 and/or Glu435. From crystallographic data it is deduced that the susceptible amino acid peptide bonds are situated near the subunit interface. Thus, these bonds are inaccessible to the proteases in the dimeric enzyme and become accessible after monomerization. It is concluded that reduction of lipoamide dehydrogenase to the four-electron reduced state(s) is accompanied by conformational changes promoting subunit dissociation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008058 Dihydrolipoamide Dehydrogenase A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES. Lipoamide Dehydrogenase,NAD Diaphorase,NADH Diaphorase,Diaphorase (Lipoamide Dehydrogenase),Dihydrolipoyl Dehydrogenase,Glycine Decarboxylase Complex L-Protein,L-Protein, Glycine Decarboxylase Complex,Lipoamide Dehydrogenase, Valine,Lipoic Acid Dehydrogenase,Lipoyl Dehydrogenase,Valine Lipoamide Dehydrogenase,Dehydrogenase, Dihydrolipoamide,Dehydrogenase, Dihydrolipoyl,Dehydrogenase, Lipoamide,Dehydrogenase, Lipoic Acid,Dehydrogenase, Lipoyl,Dehydrogenase, Valine Lipoamide,Diaphorase, NAD,Diaphorase, NADH,Glycine Decarboxylase Complex L Protein
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

W J van Berkel, and A G Regelink, and J J Beintema, and A de Kok
April 1983, Journal of molecular biology,
W J van Berkel, and A G Regelink, and J J Beintema, and A de Kok
March 1988, European journal of biochemistry,
W J van Berkel, and A G Regelink, and J J Beintema, and A de Kok
August 1991, European journal of biochemistry,
W J van Berkel, and A G Regelink, and J J Beintema, and A de Kok
December 1995, European journal of biochemistry,
W J van Berkel, and A G Regelink, and J J Beintema, and A de Kok
July 1992, European journal of biochemistry,
W J van Berkel, and A G Regelink, and J J Beintema, and A de Kok
November 1975, European journal of biochemistry,
W J van Berkel, and A G Regelink, and J J Beintema, and A de Kok
May 1991, European journal of biochemistry,
W J van Berkel, and A G Regelink, and J J Beintema, and A de Kok
November 1954, Journal of bacteriology,
Copied contents to your clipboard!