KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells. 2005

Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
Department of Medicine, Gastroenterology Division, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104-6144, USA.

KLF4 and KLF5, members of the KLF family of transcription factors, play key roles in proliferation, differentiation, and carcinogenesis in a number of gastrointestinal tissues. While KLF4 is expressed in differentiating epithelial cells, KLF5 is found in proliferating cells of the gastrointestinal tract, including the esophagus. KLF4 regulates a number of genes vital for esophageal epithelial differentiation, and decreased expression of KLF4 is seen in esophageal squamous cancers. Nonetheless, the roles of KLF4 and KLF5 in esophageal tumor progression are not known. Here, using TE2 cells stably infected with retroviral vectors to express KLF4 or KLF5, we demonstrate that KLF4 and KLF5 are key players in a number of cellular processes critical for esophageal carcinogenesis. TE2 cells, derived from a patient with poorly differentiated esophageal squamous cancer, normally lack KLF4 and KLF5. Expression of KLF5 in TE2 cells inhibits proliferation, and both KLF4 and KLF5 decrease viability after treatment with hydrogen peroxide and increase anoikis. In response to DNA damage from UV irradiation, viability is decreased in KLF5 but not KLF4 infected cells. Both KLF4 and KLF5 upregulate the cdk inhibitor p21(waf1/cip1) following UV irradiation, but the pro-apoptotic protein BAX is markedly induced only by KLF5. Thus KLF4 may preferentially activate DNA repair pathways while KLF5 induces both DNA repair and apoptosis after UV irradiation. Expression of KLF4 or KLF5 in TE2 cells also inhibits invasion, consistent with a role for each in preventing tumor metastasis. In summary, KLF4 and KLF5 regulate esophageal carcinogenesis by affecting proliferation, apoptosis, and invasion.

UI MeSH Term Description Entries
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004938 Esophageal Neoplasms Tumors or cancer of the ESOPHAGUS. Cancer of Esophagus,Esophageal Cancer,Cancer of the Esophagus,Esophagus Cancer,Esophagus Neoplasm,Neoplasms, Esophageal,Cancer, Esophageal,Cancer, Esophagus,Cancers, Esophageal,Cancers, Esophagus,Esophageal Cancers,Esophageal Neoplasm,Esophagus Cancers,Esophagus Neoplasms,Neoplasm, Esophageal,Neoplasm, Esophagus,Neoplasms, Esophagus
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000090062 Kruppel-Like Factor 4 A member of zinc finger-containing transcription factors that belongs to the KRUPPEL-LIKE FACTOR family, involved in the regulation of diverse cellular processes such as cell growth, proliferation, differentiation, and APOPTOSIS. EZF Protein,Endothelial Kruppel-Like Zinc Finger Protein,Epithelial Zinc Finger Protein,GKLF Protein,Gut-Enriched Kruppel-Like Factor,Klf4 Protein,Krueppel-Like-Factor 4,4, Krueppel-Like-Factor,4, Kruppel-Like Factor,Endothelial Kruppel Like Zinc Finger Protein,Factor 4, Kruppel-Like,Factor, Gut-Enriched Kruppel-Like,Gut Enriched Kruppel Like Factor,Kruppel Like Factor 4,Protein, EZF,Protein, GKLF,Protein, Klf4
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D051741 Kruppel-Like Transcription Factors A family of zinc finger transcription factors that share homology with Kruppel protein, Drosophila. They contain a highly conserved seven amino acid spacer sequence in between their ZINC FINGER MOTIFS. Kruppel-Like Factor,Kruppel-Like Transcription Factor,Kruppel-Like Factors,Factor, Kruppel-Like,Factor, Kruppel-Like Transcription,Kruppel Like Factor,Kruppel Like Factors,Kruppel Like Transcription Factor,Kruppel Like Transcription Factors,Transcription Factor, Kruppel-Like,Transcription Factors, Kruppel-Like

Related Publications

Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
June 2022, Cell cycle (Georgetown, Tex.),
Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
January 2018, Journal of Cancer,
Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
January 2018, Journal of B.U.ON. : official journal of the Balkan Union of Oncology,
Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
June 2019, 3 Biotech,
Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
January 2018, Cell cycle (Georgetown, Tex.),
Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
May 2017, Oncology letters,
Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
November 2023, European journal of medical research,
Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
August 2020, Acta biochimica et biophysica Sinica,
Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
July 2020, Oncology letters,
Yizeng Yang, and Bree G Goldstein, and Hann-Hsiang Chao, and Jonathan P Katz
September 2020, Experimental cell research,
Copied contents to your clipboard!