Muscarinic M2 receptor mRNA expression and receptor binding in cholinergic and non-cholinergic cells in the rat brain: a correlative study using in situ hybridization histochemistry and receptor autoradiography. 1992

M T Vilaró, and K H Wiederhold, and J M Palacios, and G Mengod
Preclinical Research, Sandoz Pharma Ltd., Basel, Switzerland.

The goal of the present study was to identify the cells containing mRNA coding for the m2 subtype of muscarinic cholinergic receptors in the rat brain. In situ hybridization histochemistry was used, with oligonucleotides as hybridization probes. The distribution of cholinergic cells was examined in consecutive sections with probes complementary to choline acetyltransferase mRNA. Furthermore, the microscopic distribution of muscarinic cholinergic binding sites was examined with a non-selective ligand ([3H]N-methylscopolamine) and with ligands proposed to be M1-selective ([3H]pirenzepine) or M2-selective ([3H]oxotremorine-M). The majority of choline acetyltransferase mRNA-rich (i.e. cholinergic) cell groups (medial septum-diagonal band complex, nucleus basalis, pedunculopontine and laterodorsal tegmental nuclei, nucleus parabigeminalis, several motor nuclei of the brainstem, motoneurons of the spinal cord), also contained m2 mRNA, strongly suggesting that at least a fraction of these receptors may be presynaptic autoreceptors. A few groups of cholinergic cells were an exception to this fact: the medial habenula and some cranial nerve nuclei (principal oculomotor, trochlear, abducens, dorsal motor nucleus of the vagus). Furthermore, m2 mRNA was not restricted to cholinergic cells but was also present in many other cells throughout the rat brain. The distribution of m2 mRNA was in good, although not complete, agreement with that of binding sites for the M2 preferential agonist [3H]oxotremorine-M, but not with [3H]pirenzepine binding sites. Regions where the presence of [3H]oxotremorine-M binding sites was not correlated with that of m2 mRNA are the caudate-putamen, nucleus accumbens, olfactory tubercle and islands of Calleja. The present results strongly suggest that the M2 receptor is expressed by a majority of cholinergic cells, where it probably plays a role as autoreceptor. However, many non-cholinergic neurons also express this receptor, which would be, presumably, postsynaptically located. Finally, comparison between the distribution of m2 mRNA and that of the proposed M2-selective ligand [3H]oxotremorine-M indicates that this ligand, in addition to M2 receptors, may also recognize in certain brain areas other muscarinic receptor populations, particularly M4.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline

Related Publications

M T Vilaró, and K H Wiederhold, and J M Palacios, and G Mengod
July 1990, Neuroscience letters,
M T Vilaró, and K H Wiederhold, and J M Palacios, and G Mengod
February 1991, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
M T Vilaró, and K H Wiederhold, and J M Palacios, and G Mengod
August 1994, Brain research,
M T Vilaró, and K H Wiederhold, and J M Palacios, and G Mengod
January 1994, Indian journal of experimental biology,
M T Vilaró, and K H Wiederhold, and J M Palacios, and G Mengod
March 1993, Brain research. Molecular brain research,
M T Vilaró, and K H Wiederhold, and J M Palacios, and G Mengod
June 1990, Brain research. Developmental brain research,
M T Vilaró, and K H Wiederhold, and J M Palacios, and G Mengod
December 1996, Brain research. Molecular brain research,
M T Vilaró, and K H Wiederhold, and J M Palacios, and G Mengod
January 1992, Cerebral cortex (New York, N.Y. : 1991),
Copied contents to your clipboard!