Traumatic brain injury causes a decrease in M2 muscarinic cholinergic receptor binding in the rat brain. 1994

M M DeAngelis, and R L Hayes, and B G Lyeth
Department of Surgery, Medical College of Virginia/Virginia Commonwealth University, Richmond 23298-0693.

Numerous studies indicate that an acute, excessive activation of muscarinic acetylcholine receptors (mAChR) contributes to the pathophysiological sequela of TBI. The present study examined the effect of moderate fluid percussion traumatic brain injury (TBI) on binding to M1 and M2 mAChR subtypes in the hippocampal formation and adjacent cortex using quantitative autoradiography. Injured animals along with concurrent controls were sacrificed by in situ freezing at 3 h or 24 h following TBI. Slide-mounted tissue sections were incubated in either [3H]pirenzepine (23 nM) for M1 or [3H]AFDX384 (9 nM) for M2 mAChR subtype labeling. Binding of [3H]pirenzepine to the M1 mAChR subtype was not significantly altered by TBI when compared to sham-injured animals. [3H]AFDX384 binding to the M2 mAChR subtype was significantly decreased at 24 h in hippocampal CA2-3 region and dorsal blade of the dentate gyrus (P < 0.05). The differences observed between M1 and M2 subtypes suggests that these muscarinic subtypes may differentially contribute to the pathophysiology of TBI.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010890 Pirenzepine An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as CIMETIDINE and RANITIDINE. It is generally well tolerated by patients. Gastrotsepin,Gastrozepin,L-S 519,LS-519,Piren-Basan,Pirenzepin,Pirenzepin Von Ct,Pirenzepin-Ratiopharm,Pirenzepine Dihydrochloride,Pyrenzepine,Ulcoprotect,Ulgescum,Dihydrochloride, Pirenzepine,LS 519,LS519,Piren Basan,Pirenzepin Ratiopharm,Von Ct, Pirenzepin
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M M DeAngelis, and R L Hayes, and B G Lyeth
March 1994, Brain research,
M M DeAngelis, and R L Hayes, and B G Lyeth
July 1994, Brain research,
M M DeAngelis, and R L Hayes, and B G Lyeth
May 1974, Proceedings of the National Academy of Sciences of the United States of America,
M M DeAngelis, and R L Hayes, and B G Lyeth
November 1974, Brain research,
M M DeAngelis, and R L Hayes, and B G Lyeth
October 1979, Brain research,
M M DeAngelis, and R L Hayes, and B G Lyeth
June 1983, Agents and actions,
M M DeAngelis, and R L Hayes, and B G Lyeth
August 1987, Research communications in chemical pathology and pharmacology,
M M DeAngelis, and R L Hayes, and B G Lyeth
November 2000, Journal of neurotrauma,
M M DeAngelis, and R L Hayes, and B G Lyeth
August 2004, Journal of neurochemistry,
Copied contents to your clipboard!