Anti-phagocytic mechanisms of Streptococcus pyogenes: binding of fibrinogen to M-related protein. 2006

Harry S Courtney, and David L Hasty, and James B Dale
Veterans Affairs Medical Center, University of Tennessee Health Science Center, Memphis, TN 38104, USA. hcourtney@utem.edu

A key attribute of invasive Streptococcus pyogenes is their ability to resist phagocytosis and multiply in human blood. M-related protein (Mrp) is a major anti-phagocytic factor but the mechanism whereby it helps streptococci to evade phagocytosis has not been demonstrated. We investigated phagocytosis resistance in a strain of serotype M4 by inactivating the mrp gene and also the emm, enn, sof and sfbX genes and by analysing the effect on streptococcal growth in blood and on complement deposition on the bacterial surface. Inactivation of enn4 and sfbX4 had little impact on growth in blood, but ablation of mrp4, emm4 or sof4 reduced streptococcal growth in human blood, confirming that Mrp and Emm are required for optimal resistance to phagocytosis and providing the first indication that Sof may be an anti-phagocytic factor. Moreover, antisera against Mrp4, Emm4 and Sof4 promoted the killing of S. pyogenes, but anti-SfbX serum had no effect. Growth of S. pyogenes in blood was dependent on the presence of fibrinogen and in the absence of fibrinogen there was a twofold increase in complement deposition. Inactivation of mrp4 resulted in a loss of fibrinogen-binding and caused a twofold increase in the binding of C3b that was inhibited by Mg-EGTA. Mrp contained two fibrinogen-binding sites, one of which is within a highly conserved region. These findings indicate that Mrp-fibrinogen interactions prevent surface deposition of complement via the classical pathway, thereby contributing to the ability of these streptococci to resist phagocytosis. This may be a common mechanism for evasion of phagocytosis because Mrp is expressed by approximately half of the clinical isolates of S. pyogenes.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

Harry S Courtney, and David L Hasty, and James B Dale
January 1989, Infection and immunity,
Harry S Courtney, and David L Hasty, and James B Dale
June 1972, The Journal of infectious diseases,
Harry S Courtney, and David L Hasty, and James B Dale
July 1994, Current microbiology,
Harry S Courtney, and David L Hasty, and James B Dale
April 2005, Molecular microbiology,
Harry S Courtney, and David L Hasty, and James B Dale
March 1988, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology,
Harry S Courtney, and David L Hasty, and James B Dale
June 1987, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology,
Harry S Courtney, and David L Hasty, and James B Dale
October 2002, Nature medicine,
Harry S Courtney, and David L Hasty, and James B Dale
June 1990, Zentralblatt fur Bakteriologie : international journal of medical microbiology,
Harry S Courtney, and David L Hasty, and James B Dale
March 2007, Veterinary microbiology,
Harry S Courtney, and David L Hasty, and James B Dale
January 1971, Bollettino dell'Istituto sieroterapico milanese,
Copied contents to your clipboard!