Characterization of maintained voltage-dependent K(+)-channels induced in Xenopus oocytes by rat brain mRNA. 1991

J H Hoger, and B Rudy, and H A Lester, and N Davidson
Division of Chemistry, California Institute of Technology, Pasadena 91125.

The voltage-dependent K+ currents encoded by rat brain mRNA were studied in Xenopus oocytes after the voltage-dependent Na+ currents and the Ca(2+)-activated Cl- currents were eliminated pharmacologically. This paper describes the maintained K+ currents (IK), defined primarily by resistance to inactivation for 1 s at a holding potential of -40 mV. IK activates at potentials more positive than -60 to -70 mV and consists of both low-threshold and high-threshold components. IK is partially blocked by both tetraethyl ammonium (TEA) and 4-aminopyridine (4-AP), which appear to be blocking the same component. Long depolarizing pulses result in incomplete inactivation of IK; the inactivating component is inhibited by TEA. Sucrose density gradient fractionation partially resolves the RNA encoding the several components of IK; most IK arises from size classes between 3.8 and 9.5 kb. The study gives further evidence for the existence of numerous distinct RNA populations that encode brain K+ channels different from previously reported cloned K+ channels that have been expressed in Xenopus oocytes.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012856 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid A non-penetrating amino reagent (commonly called SITS) which acts as an inhibitor of anion transport in erythrocytes and other cells. 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid, Disodium Salt,SITS,SITS Disodium Salt,4 Acetamido 4' isothiocyanatostilbene 2,2' disulfonic Acid,Disodium Salt, SITS
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome

Related Publications

J H Hoger, and B Rudy, and H A Lester, and N Davidson
March 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J H Hoger, and B Rudy, and H A Lester, and N Davidson
October 1990, The Journal of physiology,
J H Hoger, and B Rudy, and H A Lester, and N Davidson
February 1993, Sheng li xue bao : [Acta physiologica Sinica],
J H Hoger, and B Rudy, and H A Lester, and N Davidson
August 1991, The Biochemical journal,
J H Hoger, and B Rudy, and H A Lester, and N Davidson
July 1995, Brain research. Developmental brain research,
J H Hoger, and B Rudy, and H A Lester, and N Davidson
January 1989, Annals of the New York Academy of Sciences,
J H Hoger, and B Rudy, and H A Lester, and N Davidson
December 1988, Neuroscience research,
J H Hoger, and B Rudy, and H A Lester, and N Davidson
August 1990, Canadian journal of physiology and pharmacology,
J H Hoger, and B Rudy, and H A Lester, and N Davidson
November 1983, Proceedings of the Royal Society of London. Series B, Biological sciences,
J H Hoger, and B Rudy, and H A Lester, and N Davidson
January 1991, Neirofiziologiia = Neurophysiology,
Copied contents to your clipboard!