Functional expression of voltage dependent sodium channels in Xenopus oocytes injected with mRNA from neonatal or adult rat brain. 1995

C Virginio, and E Cherubini
Biophysics Laboratory, International School for Advanced Studies [SISSA], Trieste, Italy.

The two electrode voltage clamp technique was used to study voltage-dependent sodium currents (INa) in Xenopus laevis oocytes previously injected with mRNA extracted from adult (A) or neonatal (N, < 5 days old) rat brains. In the presence of niflumic acid (300 microM) to block endogenous Ca(2+)-activated Cl- currents, depolarizing voltage steps from a holding potential of -100 mV to various voltages elicited in both groups of oocytes fast inward sodium currents which peaked at approximately 0 mV and then slowly declined to approximately 75% of the maximum current at +40 mV. At the peak, A INa was significantly larger than N INa (296 +/- 59 nA vs. 147 +/- 32 nA). Inactivation kinetics of N INa was best fit with one exponential component whereas A INa with two exponential components. A significant difference in the voltage dependence of inactivation was found between A INa or N INa. The values of Vh were -53 +/- 0.9 mV or -59.8 +/- 0.7 mV for A INa or N INa respectively. The recovery from inactivation was fitted in both groups with two exponential functions (tau f and tau s) whose values were not significantly different. However the ratio between tau f and tau s was significantly higher for N INa comparing to A INa (5.7 vs. 2.1). TTX reversibly blocked INa. The IC50 value was 58.2 +/- 6.3 nM for A INa and 20.4 +/- 2.2 nM for N INa. These results suggest that different isoforms of TTX-sensitive, voltage-dependent sodium channel subunits are functionally expressed, may be in different proportions in oocytes injected with A or N mRNA.

UI MeSH Term Description Entries
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

C Virginio, and E Cherubini
August 1990, Canadian journal of physiology and pharmacology,
C Virginio, and E Cherubini
April 1991, Brain research. Molecular brain research,
C Virginio, and E Cherubini
March 1994, Brain research. Molecular brain research,
C Virginio, and E Cherubini
January 1989, Annals of the New York Academy of Sciences,
C Virginio, and E Cherubini
January 1989, Annals of the New York Academy of Sciences,
C Virginio, and E Cherubini
February 1993, Sheng li xue bao : [Acta physiologica Sinica],
Copied contents to your clipboard!