Four-week inhalation toxicity study with Ludox colloidal silica in rats: pulmonary cellular responses. 1991

D B Warheit, and M C Carakostas, and D P Kelly, and M A Hartsky
Haskell Laboratory for Toxicology and Industrial Medicine, E.I. du Pont de Nemours and Company, Newark, Delaware 19714.

This study was designed to complement a traditional subchronic inhalation toxicity study with Ludox colloidal silica. CD rats were exposed nose-only for 2 or 4 weeks at concentrations of 0, 10, 50, and 150 mg/m3 Ludox (dried SiO2). Additional groups of rats exposed for 4 weeks were given a 3-month recovery period. Following exposure and/or recovery, fluids and cells were recovered from the lungs by bronchoalveolar lavage (BAL) and measured for cellular and biochemical parameters. Additional groups of animals were processed for cell labeling studies or lung deposition studies. Inhaled doses of Ludox colloidal silica were measured after 4-week exposures and were found to be 489 micrograms/lung (10 mg/m3 group), 2418 micrograms/lung (50 mg/m3), and 7378 micrograms/lung (150 mg/m3), respectively. Results showed that exposures to 150 mg/m3 Ludox for 2 or 4 weeks produced pulmonary inflammation along with increases in BAL protein, LDH, and alkaline phosphatase values (p less than 0.05) and reduced macrophage phagocytosis. Inflammatory responses, evidenced by increased numbers of neutrophils, were also measured in the lungs of the 50 mg/m3 group following 2 and/or 4 weeks of exposure. Most biochemical parameters for all groups returned to control values following a 3-month recovery period. Autoradiographic studies demonstrated that the labeling indices of terminal bronchiolar and lung parenchymal cells were generally increased in the 50 and 150 mg/m3 groups after 2 and 4 weeks of exposure but, with one exception, returned to normal levels following a 3-month postexposure period. No significant alterations in any measured parameters were detected in rats exposed to 10 mg/m3 Ludox at any time postexposure. The determination of a no-observable-effect level (NOEL) of 10 mg/m3 was consistent with results obtained by conventional toxicology methods and affirms the utility of these biochemical, cellular, and autoradiographic techniques for providing a predictive screen to assess the toxicity of inhaled particles.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008171 Lung Diseases Pathological processes involving any part of the LUNG. Pulmonary Diseases,Disease, Pulmonary,Diseases, Pulmonary,Pulmonary Disease,Disease, Lung,Diseases, Lung,Lung Disease
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001992 Bronchoalveolar Lavage Fluid Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung. Alveolar Lavage Fluid,Bronchial Lavage Fluid,Lung Lavage Fluid,Bronchial Alveolar Lavage Fluid,Lavage Fluid, Bronchial,Lavage Fluid, Lung,Pulmonary Lavage Fluid,Alveolar Lavage Fluids,Bronchial Lavage Fluids,Bronchoalveolar Lavage Fluids,Lavage Fluid, Alveolar,Lavage Fluid, Bronchoalveolar,Lavage Fluid, Pulmonary,Lavage Fluids, Alveolar,Lavage Fluids, Bronchial,Lavage Fluids, Bronchoalveolar,Lavage Fluids, Lung,Lavage Fluids, Pulmonary,Lung Lavage Fluids,Pulmonary Lavage Fluids
D000280 Administration, Inhalation The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract. Drug Administration, Inhalation,Drug Administration, Respiratory,Drug Aerosol Therapy,Inhalation Drug Administration,Inhalation of Drugs,Respiratory Drug Administration,Aerosol Drug Therapy,Aerosol Therapy, Drug,Drug Therapy, Aerosol,Inhalation Administration,Administration, Inhalation Drug,Administration, Respiratory Drug,Therapy, Aerosol Drug,Therapy, Drug Aerosol

Related Publications

D B Warheit, and M C Carakostas, and D P Kelly, and M A Hartsky
October 1992, Fundamental and applied toxicology : official journal of the Society of Toxicology,
D B Warheit, and M C Carakostas, and D P Kelly, and M A Hartsky
October 2020, Toxicological research,
D B Warheit, and M C Carakostas, and D P Kelly, and M A Hartsky
November 2003, Toxicology,
D B Warheit, and M C Carakostas, and D P Kelly, and M A Hartsky
October 1996, Regulatory toxicology and pharmacology : RTP,
D B Warheit, and M C Carakostas, and D P Kelly, and M A Hartsky
January 1974, Upsala journal of medical sciences,
D B Warheit, and M C Carakostas, and D P Kelly, and M A Hartsky
July 2013, Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases,
D B Warheit, and M C Carakostas, and D P Kelly, and M A Hartsky
May 2003, Drug and chemical toxicology,
D B Warheit, and M C Carakostas, and D P Kelly, and M A Hartsky
February 1987, Journal of applied toxicology : JAT,
D B Warheit, and M C Carakostas, and D P Kelly, and M A Hartsky
September 1994, Toxicology letters,
Copied contents to your clipboard!