Sister chromatid cohesion remodeling and meiotic recombination. 2006

Anna V Kateneva, and Michael E Dresser
Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.

Proper control of cohesion along the chromosome arms is essential for segregation of homologous chromosomes in meiosis. In a recent study we reported that Tid1p, a protein previously implicated in recombination, is required for resolution of Mcd1p-dependent cohesion in meiosis. Here we demonstrate that Pds5p and Dmc1p promote this cohesion. Pds5p is known to be required for maintenance of cohesion while Dmc1p is recognized as essential for meiotic recombination. Finding that the same defect in separation of sister chromatids could be suppressed by disrupting the functions of these proteins supports the emerging recognition that cohesion is remodeled during recombination and further indicates that cohesion is modified specifically to regulate meiotic recombination. We also find that overexpression of the regulatory subunit of Cdc7p kinase, Dbf4p, suppresses the tid1delta sporulation defect, suggesting a role for Cdc7p/Dbf4p in regulating cohesion.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002842 Chromatids Either of the two longitudinally adjacent threads formed when a eukaryotic chromosome replicates prior to mitosis. The chromatids are held together at the centromere. Sister chromatids are derived from the same chromosome. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromatid
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal

Related Publications

Anna V Kateneva, and Michael E Dresser
January 1995, Advances in genetics,
Anna V Kateneva, and Michael E Dresser
January 2000, Chromosoma,
Anna V Kateneva, and Michael E Dresser
January 2017, Methods in molecular biology (Clifton, N.J.),
Anna V Kateneva, and Michael E Dresser
November 2012, Cold Spring Harbor perspectives in biology,
Anna V Kateneva, and Michael E Dresser
August 2004, Trends in biochemical sciences,
Anna V Kateneva, and Michael E Dresser
March 1980, Proceedings of the National Academy of Sciences of the United States of America,
Anna V Kateneva, and Michael E Dresser
May 2007, Cell cycle (Georgetown, Tex.),
Anna V Kateneva, and Michael E Dresser
December 2001, The EMBO journal,
Copied contents to your clipboard!