Relationships among chromatid interchanges, sister chromatid exchanges, and meiotic recombination in Drosophila melanogaster. 1980

M Gatti, and S Pimpinelli, and B S Baker

Repair- and recombination-defective mutations at two loci (mei-9 and mei-41) of Drosophila melanogaster have been examined for their effects on the induction of chromosome aberrations by x-rays and the formation of sister chromatid exchanges (SCEs). Irradiation of larval neuroblast cells during the S phase with x-rays showed that mutants at both of these loci are about 10 times more sensitive than wild type to the induction of chromosome aberrations. The pattern of induced aberrations was characteristic for each mutant locus: in cells bearing mei-9 mutations most breaks were chromatid deletions, whereas in the presence of mei-41 mutations similar frequencies of chromatid and isochromatid deletions were observed. Furthermore, chromatid interchanges could not be induced in cells carrying mei-9 alleles; therefore these mutations define a step necessary for chromatid rejoining. mei-41 alleles also define a function involved in the formation of chromatid interchanges; total exchanges were less frequent than expected from nonmutant controls; and the proportion of exchanges arising by symmetrical rejoining was markedly reduced. These data indicate that chromatid and isochromatid deletions have different molecular steps in their formation, and that different molecular mechanisms are also involved in the symmetrical and unsymmetrical rejoining in chromatid interchanges. Neuroblast cells of larvae bearing mei-9 and mei-41 alleles were also treated for 13 hr with 5-bromodeoxyuridine at 9 mug/ml in order to differentiate sister chromatids for the scoring of SCEs. Whereas mei-41 had a normal level of SCEs, mei-9 exhibited a frequency of SCEs that was about 70% that of the control. Because both mei-9 and mei-41 mutations result in defective meiotic recombination, these data suggest that they define steps shared by symmetrical interchange formation and meiotic recombination that do not participate in the formation of most SCEs.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002842 Chromatids Either of the two longitudinally adjacent threads formed when a eukaryotic chromosome replicates prior to mitosis. The chromatids are held together at the centromere. Sister chromatids are derived from the same chromosome. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromatid
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D003434 Crossing Over, Genetic The reciprocal exchange of segments at corresponding positions along pairs of homologous CHROMOSOMES by symmetrical breakage and crosswise rejoining forming cross-over sites (HOLLIDAY JUNCTIONS) that are resolved during CHROMOSOME SEGREGATION. Crossing-over typically occurs during MEIOSIS but it may also occur in the absence of meiosis, for example, with bacterial chromosomes, organelle chromosomes, or somatic cell nuclear chromosomes. Crossing Over,Crossing-Over, Genetic,Crossing Overs,Genetic Crossing Over,Genetic Crossing-Over
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012854 Sister Chromatid Exchange An exchange of segments between the sister chromatids of a chromosome, either between the sister chromatids of a meiotic tetrad or between the sister chromatids of a duplicated somatic chromosome. Its frequency is increased by ultraviolet and ionizing radiation and other mutagenic agents and is particularly high in BLOOM SYNDROME. Chromatid Exchange, Sister,Chromatid Exchanges, Sister,Exchange, Sister Chromatid,Exchanges, Sister Chromatid,Sister Chromatid Exchanges

Related Publications

M Gatti, and S Pimpinelli, and B S Baker
December 1975, Humangenetik,
M Gatti, and S Pimpinelli, and B S Baker
January 1995, Advances in genetics,
M Gatti, and S Pimpinelli, and B S Baker
October 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M Gatti, and S Pimpinelli, and B S Baker
January 1984, Basic life sciences,
M Gatti, and S Pimpinelli, and B S Baker
February 1980, Genetics,
M Gatti, and S Pimpinelli, and B S Baker
March 2006, Cell cycle (Georgetown, Tex.),
M Gatti, and S Pimpinelli, and B S Baker
September 1979, Mutation research,
M Gatti, and S Pimpinelli, and B S Baker
April 2021, Current biology : CB,
M Gatti, and S Pimpinelli, and B S Baker
January 1980, Advances in human genetics,
Copied contents to your clipboard!