Protective effects of honokiol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells. 2006

Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
Division of Endocrinology and Metabolism, Department of Education and Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.

Honokiol, a compound extracted from Chinese medicinal herb Magnolia officinalis, has several biological effects. However, its protective effects against endothelial injury remain unclarified. In this study, we examined whether honokiol prevented oxidized low-density lipoprotein (oxLDL)-induced vascular endothelial dysfunction. Incubation of oxLDL with honokiol (2.5-20 microM) inhibited copper-induced oxidative modification as demonstrated by diene formation, thiobarbituric acid reactive substances (TBARS) assay and electrophoretic mobility assay. Expression of adhesion molecules (ICAM, VCAM and E-selectin) and endothelial NO synthase (eNOS) affected by oxLDL was investigated by flow cytometry and Western blot. We also measured the production of reactive oxygen species (ROS) using the fluorescent probe 2',7'-dichlorofluorescein acetoxymethyl ester (DCF-AM). Furthermore, several apoptotic phenomena including increased cytosolic calcium, alteration of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 were also investigated. Apoptotic cell death was characterized by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) stain. The results showed that honokiol prevented the copper-induced oxidative modification of LDL. Honokiol also ameliorated the oxLDL-diminished eNOS protein expression and reduced the oxLDL-induced adhesion molecules and the adherence of THP-1 cells to HUVECs. Furthermore, honokiol attenuated the oxLDL-induced cytotoxicity, apoptotic features, ROS generation, intracellular calcium accumulation and the subsequent mitochondrial membrane potential collapse, cytochrome c release and activation of caspase-3. Our results suggest that honokiol may have clinical implications in the prevention of atherosclerotic vascular disease.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D001713 Biphenyl Compounds Whitish aromatic crystalline organic compounds made up of two conjoined BENZENE rings. Compounds, Biphenyl
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
December 2007, Journal of agricultural and food chemistry,
Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
October 2010, Zhonghua yi xue za zhi,
Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
January 2008, Journal of cardiovascular pharmacology,
Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
March 2003, Planta medica,
Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
January 2001, Journal of biochemical and molecular toxicology,
Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
August 2012, International journal of molecular medicine,
Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
January 1997, Free radical biology & medicine,
Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
June 1995, Biochimica et biophysica acta,
Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
March 1993, Atherosclerosis,
Hsiu-Chung Ou, and Fen-Pi Chou, and Tsung-Min Lin, and Ching-Hwa Yang, and Wayne Huey-Herng Sheu
March 2010, Journal of ethnopharmacology,
Copied contents to your clipboard!