Differential effects of ryanodine and tetracaine on charge movement and calcium transients in frog skeletal muscle. 1991

J García, and A J Avila-Sakar, and E Stefani
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030.

1. Charge movement and myoplasmic calcium transients were simultaneously recorded from frog skeletal muscle fibres by using the double-seal Vaseline-gap technique. Calcium transients were monitored with the fluorescent indicator Rhod-2. 2. Ryanodine modified the kinetics and the total amount of charge moved during depolarizing pulses (Q(on)), while it did not significantly modify the charge after repolarization (Q(off)). The extracellular application of 100 microM-ryanodine elicited a temporary initial increase of the delayed component of charge movement (Q gamma) and the calcium transient. Both phenomena were later blocked with the same temporal course and to the same extent. 3. The blockade of Q gamma and the calcium transient was also observed with ryanodine concentrations of 1-10 microM. For membrane potentials positive to -10mV, the Qon measured was larger in the presence of ryanodine; Qoff was not modified. 4. Tetracaine (400-500 microM) blocked a similar delayed component of Qon, identified as Q gamma, as well as the calcium transient monitored simultaneously. This effect was observed in the first minutes after the addition of tetracaine to the extracellular solution. 5. Tetracaine blocked a faster initial component of Qon for voltages positive to -10 mV, corresponding to the voltage range of activation of the calcium current. At these same membrane potentials, Qoff was also reduced to a similar extent to Qon. 6. Ryanodine and tetracaine showed different effects on calcium current. Whereas the slow calcium current was not modified upon the addition of ryanodine, it was completely blocked in the presence of tetracaine. The blockade of the slow calcium current made evident the fast calcium current. The effects of tetracaine on the charge movement, the calcium transient and the slow calcium current were reversible. 7. These results suggest that ryanodine and tetracaine may act at different sites. Ryanodine exerts its effect on the sarcoplasmic reticulum ryanodine receptor, blocking calcium release and Q gamma, while tetracaine at these concentrations may affect the release channel and the dihydropyridine receptor, causing a blockade of the charge movement, calcium transient and calcium current.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
D013748 Tetracaine A potent local anesthetic of the ester type used for surface and spinal anesthesia. Tetrakain,Amethocaine,Ametop,Dicaine,Pantocaine,Pontocaine,Tetracaine Monohydrochloride,Tetrracaine Hydrochloride,Hydrochloride, Tetrracaine
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

J García, and A J Avila-Sakar, and E Stefani
November 1988, The Journal of general physiology,
J García, and A J Avila-Sakar, and E Stefani
March 1983, Proceedings of the National Academy of Sciences of the United States of America,
J García, and A J Avila-Sakar, and E Stefani
May 1979, Nature,
J García, and A J Avila-Sakar, and E Stefani
August 1983, The Journal of physiology,
J García, and A J Avila-Sakar, and E Stefani
March 1979, The Journal of physiology,
J García, and A J Avila-Sakar, and E Stefani
November 1992, The Journal of physiology,
J García, and A J Avila-Sakar, and E Stefani
April 1986, The Journal of physiology,
J García, and A J Avila-Sakar, and E Stefani
June 1990, The Journal of physiology,
J García, and A J Avila-Sakar, and E Stefani
February 1990, The Journal of physiology,
J García, and A J Avila-Sakar, and E Stefani
September 1988, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!