[Synergism of energy-dependent calcium fluxes through smooth muscle cell membrane]. 1991

N F Burchinskaia, and S A Kosterin, and L G Babich

Some peculiarities of Ca2+ exchange in the vesiculate fraction of myometrium sarcolemma during separate and combined functioning of the Ca-pump and Na(+)-Ca2+ antiporter in the presence of initial physiologically significant transmembrane gradients of Ca2+ and Na+ were studied. The effect of synergistic activation of the transfer substrate accumulation inside the vesicles was demonstrated. This effect was observed both in the presence of inside-out directed Ca2+ gradient and in its absence. At Ca2+ concentrations in the extravesicular space equimolar to those in contracted myocytes (5 x 10(-6)-10(-5) M), the co-functioning of the cationic antiporter and Ca-pump provided for effective translocation of the transfer substrate to the vesicles which fully prevented the dissipation of the initial oppositely directed Ca2+ gradient. The synergism of energy-dependent calcium fluxes seemed to be unrelated to changes in the chemical composition of the ATP-containing incubation medium responsible for the induction of Mg2+, ATP- and Na(+)-dependent Ca2+ transfer (addition to the medium of Mg2+ and isotonic replacement of Na+ for choline+, respectively). It is concluded that the observed synergism is due to the stimulating effect of the Na+ gradient on the turnover number of the myometrium sarcolemma Ca-pump.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009215 Myometrium The smooth muscle coat of the uterus, which forms the main mass of the organ. Uterine Muscle,Muscle, Uterine,Muscles, Uterine,Uterine Muscles
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005260 Female Females
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

N F Burchinskaia, and S A Kosterin, and L G Babich
February 1984, The American journal of physiology,
N F Burchinskaia, and S A Kosterin, and L G Babich
January 2003, Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi,
N F Burchinskaia, and S A Kosterin, and L G Babich
October 1969, Archives internationales de physiologie et de biochimie,
N F Burchinskaia, and S A Kosterin, and L G Babich
February 1993, Hypertension (Dallas, Tex. : 1979),
N F Burchinskaia, and S A Kosterin, and L G Babich
December 1985, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
N F Burchinskaia, and S A Kosterin, and L G Babich
January 2002, Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi,
N F Burchinskaia, and S A Kosterin, and L G Babich
January 1996, Ukrainskii biokhimicheskii zhurnal (1978),
N F Burchinskaia, and S A Kosterin, and L G Babich
November 1989, Hypertension (Dallas, Tex. : 1979),
N F Burchinskaia, and S A Kosterin, and L G Babich
January 1992, Japanese journal of pharmacology,
N F Burchinskaia, and S A Kosterin, and L G Babich
May 1997, Anesthesiology,
Copied contents to your clipboard!