Calcium concentration-dependent mechanisms through which ketamine relaxes canine airway smooth muscle. 1997

C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, USA.

BACKGROUND Ketamine is a potent bronchodilator that, in clinically used concentrations, relaxes airway smooth muscle in part by a direct effect. This study explored the role of calcium concentration (Ca2+) in this relaxation. METHODS Canine trachea smooth muscle strips were loaded with the fluorescent probe fura-2 and mounted in a spectro-photometric system to measure force and intracellular calcium concentration ([Ca2+]i) simultaneously. Calcium influx was estimated using a manganese quenching technique. Cyclic nucleotides in the airway smooth muscle strips were measured by radioimmunoassay. RESULTS In smooth muscle strips stimulated with submaximal (0.1 microM) and maximal (10 microM) concentrations of acetylcholine, ketamine caused a concentration-dependent decrease in force and [Ca2+]i. The sensitivity of the force response to ketamine significantly decreased as the intensity of muscarinic receptor stimulation increased; the median effective concentration for relaxation induced by ketamine was 59 microM and 850 microM for tissue contracted by 0.1 microM or 10 microM acetylcholine, respectively (P < 0.05). In contrast, the sensitivity of the [Ca2+]i response did not depend on the intensity of muscarinic receptor stimulation. Ketamine at 1 mM significantly inhibited calcium influx. Ketamine did not significantly increase cyclic nucleotide concentrations. CONCLUSIONS Ketamine-induced relaxation of canine airway smooth muscle is associated with a decrease in [Ca2+]i and calcium influx, effects that are not mediated by an increase in cyclic nucleotides; and the sensitivity of the force response to ketamine decreases as the level of preexisting muscle tone increases, an effect that is not explained by differential effects on [Ca2+]i.

UI MeSH Term Description Entries
D007649 Ketamine A cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE) and may interact with sigma receptors. 2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone,CI-581,Calipsol,Calypsol,Kalipsol,Ketalar,Ketamine Hydrochloride,Ketanest,Ketaset,CI 581,CI581
D008297 Male Males
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D001993 Bronchodilator Agents Agents that cause an increase in the expansion of a bronchus or bronchial tubes. Bronchial-Dilating Agents,Bronchodilator,Bronchodilator Agent,Broncholytic Agent,Bronchodilator Effect,Bronchodilator Effects,Bronchodilators,Broncholytic Agents,Broncholytic Effect,Broncholytic Effects,Agent, Bronchodilator,Agent, Broncholytic,Agents, Bronchial-Dilating,Agents, Bronchodilator,Agents, Broncholytic,Bronchial Dilating Agents,Effect, Bronchodilator,Effect, Broncholytic,Effects, Bronchodilator,Effects, Broncholytic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
April 1997, Anesthesia and analgesia,
C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
January 2016, Evidence-based complementary and alternative medicine : eCAM,
C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
July 2020, Biological & pharmaceutical bulletin,
C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
March 2019, Life sciences,
C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
June 1988, The American journal of physiology,
C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
March 1986, The Journal of physiology,
C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
August 2012, American journal of physiology. Lung cellular and molecular physiology,
C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
February 2019, Experimental physiology,
C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
December 2013, The Journal of physiology,
C M Pabelick, and K A Jones, and K Street, and R R Lorenz, and D O Warner
January 2009, American journal of physiology. Lung cellular and molecular physiology,
Copied contents to your clipboard!