Acetylcholine recycling and release at rat motor nerve terminals studied using (-)-vesamicol and troxpyrrolium. 1991

T Searl, and C Prior, and I G Marshall
Department of Physiology and Pharmacology, University of Strathclyde, Glasgow.

1. The presynaptic mechanisms governing the release and recycling of synaptic vesicles have been studied by examining the effects of nerve stimulation, (-)-vesamicol (an inhibitor of acetylcholine transport into synaptic vesicles) and troxypyrrolium (an inhibitor of the high-affinity, sodium-dependent, choline uptake system) on endplate currents (EPCs) and miniature endplate currents (MECPs) recorded from motor endplates in cut rat hemidiaphragm preparations. 2. In control experiments, 5 min of 10 Hz nerve stimulation had no effect on either the mean or the distribution of MEPC amplitudes. 3. Nerve stimulation in the presence of (-)-vesamicol (25 nM-10 microM) revealed a population of MEPCs that was unaffected by the compound and a population of MEPCs whose mean amplitude was selectively reduced by the compound. 4. Nerve stimulation in the presence of troxypyrrolium (20 microM) produced a uniform reduction in the amplitude of all MEPCs with no change in the coefficient of variance of MEPC amplitudes. 5. The concentration-dependent effects of (-)-vesamicol on the amplitude of the evoked EPCs paralleled the concentration-dependent effects of the compound on MEPC amplitudes. 6. The results are consistent with the hypothesis that both recycled and performed synaptic vesicles are heterogeneously released from rat motor nerve terminals and that (-)-vesamicol acts selectively on recycling vesicles. In addition, a model of vascular loading that accounts for the different effects of nerve stimulation on MEPC amplitudes in the presence of (-)-vesamicol and troxypyrrolium is described.

UI MeSH Term Description Entries
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009467 Neuromuscular Depolarizing Agents Drugs that interrupt transmission at the skeletal neuromuscular junction by causing sustained depolarization of the motor end plate. These agents are primarily used as adjuvants in surgical anesthesia to cause skeletal muscle relaxation. Depolarizing Muscle Relaxants,Muscle Relaxants, Depolarizing,Depolarizing Blockers,Agents, Neuromuscular Depolarizing,Blockers, Depolarizing,Depolarizing Agents, Neuromuscular,Relaxants, Depolarizing Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D010880 Piperidines A family of hexahydropyridines.
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic

Related Publications

T Searl, and C Prior, and I G Marshall
December 1965, The Journal of physiology,
T Searl, and C Prior, and I G Marshall
November 1989, The Journal of pharmacology and experimental therapeutics,
T Searl, and C Prior, and I G Marshall
November 1997, British journal of pharmacology,
T Searl, and C Prior, and I G Marshall
June 1999, Journal of neurophysiology,
T Searl, and C Prior, and I G Marshall
January 1992, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
T Searl, and C Prior, and I G Marshall
April 1981, Naunyn-Schmiedeberg's archives of pharmacology,
T Searl, and C Prior, and I G Marshall
March 2006, Neuropharmacology,
T Searl, and C Prior, and I G Marshall
January 1972, Nature: New biology,
Copied contents to your clipboard!