Nicotinic antagonist-produced frequency-dependent changes in acetylcholine release from rat motor nerve terminals. 1994

L Tian, and C Prior, and J Dempster, and I G Marshall
Department of Physiology and Pharmacology, University of Strathclyde, Glasgow.

1. The frequency (0.5-150 Hz) and calcium dependence (0.5-2.0 mM) of the effects of the nicotinic antagonist tubocurarine (0.2 microM) on acetylcholine (ACh) liberation from motor nerve terminals has been examined using binomial analysis of quantal transmitter release. 2. At an extracellular calcium ion concentration ([Ca2+]o) of 2.0 mM, tubocurarine produced a decrease in the endplate current (EPC) quantal content of approximately 30% at high frequencies of motor nerve stimulation (50-150 Hz). In contrast, at low frequencies of stimulation (0.5-1.0 Hz), tubocurarine enhanced the EPC quantal content by approximately 20%. 3. The enhancement of EPC quantal content produced by tubocurarine at low frequencies of motor nerve stimulation was [Ca2+]o dependent, being abolished when [Ca2+]o was lowered from 2.0 to 0.5 mM. In contrast, the decrease in quantal content produced by tubocurarine at high frequencies of motor nerve stimulation was independent of [Ca2+]o, being approximately 30% at all calcium ion concentrations studied. 4. In direct contrast to tubocurarine, the nicotinic antagonist vecuronium (1.0 microM) produced no increase in EPC quantal content at low frequencies of nerve stimulation. However, at high frequencies of nerve stimulation it decreased EPC quantal content to a similar extent to 0.2 microM tubocurarine. The frequency-dependent decrease in EPC quantal content produced by 1.0 microM vecuronium in 2.0 mM [Ca2+]o was very similar to that seen with 0.2 microM tubocurarine in 0.5 mM [Ca2+]o. 5. Binomial analysis revealed that all the changes in EPC quantal content associated with both nicotinic antagonists were due to changes in the size of the pool of quanta in the nerve terminal available for immediate release with no effect on the probability of release of an individual quantum. 6. The results are interpreted in terms of two separately identifiable prejunctional actions of the nicotinic antagonists, both involving an action at nicotinic ACh receptors situated on the motor nerve terminal. Thus, at high frequencies of motor nerve stimulation tubocurarine and vecuronium produce a [Ca2+]o-independent decrease in ACh release, probably through an inhibitory action on a positive-feedback prejunctional nicotinic autoreceptor closely related to the muscle-type nicotinic ACh autoreceptor. However, at low frequencies of motor nerve stimulation we suggest that tubocurarine, but not vecuronium, produces a [Ca2+]o-dependent increase in ACh release through an action at a negative-feedback prejunctional neuronal-type nicotinic ACh autoreceptor.

UI MeSH Term Description Entries
D008297 Male Males
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005731 Ganglionic Stimulants Agents that mimic neural transmission by stimulation of the nicotinic receptors on postganglionic autonomic neurons. Drugs that indirectly augment ganglionic transmission by increasing the release or slowing the breakdown of acetylcholine or by non-nicotinic effects on postganglionic neurons are not included here nor are the nonspecific cholinergic agonists. Stimulants, Ganglionic
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014403 Tubocurarine A neuromuscular blocker and active ingredient in CURARE; plant based alkaloid of Menispermaceae. Tubocurare,Tubocurarine Chloride,d-Tubocurare,d-Tubocurarine

Related Publications

L Tian, and C Prior, and J Dempster, and I G Marshall
January 1992, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
L Tian, and C Prior, and J Dempster, and I G Marshall
November 1989, The Journal of pharmacology and experimental therapeutics,
L Tian, and C Prior, and J Dempster, and I G Marshall
March 2006, Neuropharmacology,
L Tian, and C Prior, and J Dempster, and I G Marshall
March 2000, British journal of pharmacology,
L Tian, and C Prior, and J Dempster, and I G Marshall
November 1964, The Journal of physiology,
L Tian, and C Prior, and J Dempster, and I G Marshall
February 1965, Proceedings of the Royal Society of London. Series B, Biological sciences,
L Tian, and C Prior, and J Dempster, and I G Marshall
May 1966, Acta physiologica Scandinavica,
L Tian, and C Prior, and J Dempster, and I G Marshall
July 1978, British journal of pharmacology,
L Tian, and C Prior, and J Dempster, and I G Marshall
December 1991, The Journal of physiology,
Copied contents to your clipboard!