Progressive reparative gliosis in aged hosts and interferences with neural grafts in an animal model of Huntington's disease. 2006

Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic. mazurova@lfhk.cuni.cz

1. Neural transplantation in Huntington's diseased patients is currently the only approach in the treatment of this neurodegenerative disorder. The clinical trial, unfortunately, includes only a small number of patients until now, since many important questions have not been answered yet. One of them is only mild to moderate improvement of the state in most of grafted patients. 2. We examined the morphological correlates in the response to intrastriatal grafting of fragments of foetal rat ventral mesencephalic tissue 1 month after transplantation in male Wistar rats within varying durations (from 2 to 38 weeks) of experimentally induced neurodegenerative process of the striatum (used as a model of Huntington's disease). Our goal was to determine the impact of advanced striatal damage and gliosis on the graft viability and host-graft integration. 3. The findings can be summarized as follows: The progressive reactive gliosis, which is not able to compensate continual reduction of the grey matter leading to an extensive atrophy of the striatum in a long-term lesions, results in formation of the compact glial network. This tissue cannot be considered the suitable terrain for successful graft development and formation of host-graft interconnections. 4. The progression of irreversible morphological changes in long-lasting neurodegenerative process within the striatum can be supposed one of the important factors, which may decrease our prospect of distinct improvement after neural grafting in patients in advanced stage of Huntington's disease, who still remain the leading group in clinical trials.

UI MeSH Term Description Entries
D008297 Male Males
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005911 Gliosis The production of a dense fibrous network of neuroglia; includes astrocytosis, which is a proliferation of astrocytes in the area of a degenerative lesion. Astrocytosis,Astrogliosis,Glial Scar,Astrocytoses,Glial Scars,Scar, Glial
D006816 Huntington Disease A familial disorder inherited as an autosomal dominant trait and characterized by the onset of progressive CHOREA and DEMENTIA in the fourth or fifth decade of life. Common initial manifestations include paranoia; poor impulse control; DEPRESSION; HALLUCINATIONS; and DELUSIONS. Eventually intellectual impairment; loss of fine motor control; ATHETOSIS; and diffuse chorea involving axial and limb musculature develops, leading to a vegetative state within 10-15 years of disease onset. The juvenile variant has a more fulminant course including SEIZURES; ATAXIA; dementia; and chorea. (From Adams et al., Principles of Neurology, 6th ed, pp1060-4) Huntington Chorea,Juvenile Huntington Disease,Akinetic-Rigid Variant of Huntington Disease,Chorea, Chronic Progressive Hereditary (Huntington),Chronic Progressive Hereditary Chorea (Huntington),Huntington Chronic Progressive Hereditary Chorea,Huntington Disease, Akinetic-Rigid Variant,Huntington Disease, Juvenile,Huntington Disease, Juvenile-Onset,Huntington Disease, Late Onset,Huntington's Chorea,Huntington's Disease,Juvenile-Onset Huntington Disease,Late-Onset Huntington Disease,Progressive Chorea, Chronic Hereditary (Huntington),Progressive Chorea, Hereditary, Chronic (Huntington),Akinetic Rigid Variant of Huntington Disease,Chorea, Huntington,Chorea, Huntington's,Huntington Disease, Akinetic Rigid Variant,Huntington Disease, Juvenile Onset,Huntington Disease, Late-Onset,Juvenile Onset Huntington Disease,Late Onset Huntington Disease
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001479 Basal Ganglia Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres. Basal Nuclei,Ganglia, Basal,Basal Nuclear Complex,Ganglion, Basal,Basal Nuclear Complices,Nuclear Complex, Basal,Nuclei, Basal
D014180 Transplantation Transference of a tissue or organ from either an alive or deceased donor, within an individual, between individuals of the same species, or between individuals of different species. Transplantations
D016332 Fetal Tissue Transplantation Transference of fetal tissue between individuals of the same species or between individuals of different species. Grafting, Fetal Tissue,Transplantation, Fetal Tissue,Fetal Tissue Donation,Donation, Fetal Tissue,Donations, Fetal Tissue,Fetal Tissue Donations,Fetal Tissue Grafting,Fetal Tissue Graftings,Fetal Tissue Transplantations,Graftings, Fetal Tissue,Tissue Donation, Fetal,Tissue Donations, Fetal,Tissue Grafting, Fetal,Tissue Graftings, Fetal,Tissue Transplantation, Fetal,Tissue Transplantations, Fetal,Transplantations, Fetal Tissue
D016380 Brain Tissue Transplantation Transference of brain tissue, either from a fetus or from a born individual, between individuals of the same species or between individuals of different species. Grafting, Brain Tissue,Transplantation, Brain Tissue,Brain Tissue Grafting,Brain Tissue Graftings,Brain Tissue Transplantations,Graftings, Brain Tissue,Tissue Grafting, Brain,Tissue Graftings, Brain,Tissue Transplantation, Brain,Tissue Transplantations, Brain,Transplantations, Brain Tissue

Related Publications

Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
January 2000, Cell transplantation,
Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
September 1990, Brain research bulletin,
Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
April 1979, Biological psychiatry,
Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
April 1981, British journal of anaesthesia,
Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
November 2009, The Lancet. Neurology,
Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
June 1979, Archives of neurology,
Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
May 2002, Movement disorders : official journal of the Movement Disorder Society,
Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
October 2013, Nature reviews. Neuroscience,
Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
December 2019, Human molecular genetics,
Yvona Mazurová, and Ivan Látr, and Jan Osterreicher, and Ivana Guncová
March 2005, The European journal of neuroscience,
Copied contents to your clipboard!