Neural grafts and pharmacological intervention in a model of Huntington's disease. 1990

M Giordano, and L M Ford, and M T Shipley, and P R Sanberg
Department of Psychiatry, University of Cincinnati, College of Medicine, OH 45267.

Using the excitotoxic animal model of Huntington's disease, two experimental treatments were evaluated. The first experiment explored the effect of MK801 (a systemically active anticonvulsant, and noncompetitive NMDA antagonist) pretreatment on quinolinic acid (QA)-induced striatal degeneration and behavioral deficits. MK801 prevented QA-induced neuropathological changes in the striatum and the anatomical protection was correlated with the absence of deficits in the cataleptic response to haloperidol. The second experiment tested the ability of three types of fetal grafts to reverse behavioral deficits induced by kainic acid (KA) lesion. Fetal (E15-16) striatal, cortical and tectal grafts were delivered into the KA-lesioned striatum one week or one month after lesion. Animals in this experiment were evaluated on a motor coordination task, haloperidol-induced catalepsy and amphetamine-induced locomotor activity. Striatal grafts attenuated the deficits induced by KA in all of the tasks observed, and no effect of time of grafting was detected. Tectal grafts had a partial beneficial effect, attenuating the decrease in the cataleptic response to haloperidol observed after KA lesions. No effect of time of grafting was detected for these grafts. In contrast, a clear effect of time of grafting was detected for the cortical grafts. Early cortical grafts reversed the exaggerated response to amphetamine observed after KA lesions whereas late cortical grafts resulted in sham-like scores on the catalepsy test. Histochemical analysis showed that most of the grafts survived, had acetylcholinesterase (AChE) positive fibers and cell bodies, and were metabolically active as indicated by cytochrome oxidase (CO) positive staining. It is suggested that striatal grafts may have restored to some extent the striatal GABAergic control over output structures, and that trophic factors play a role in behavioral recovery as is evident from the beneficial effects of the tectal grafts. Although the mechanisms underlying the differential effects observed after early or late cortical grafts are unknown, the interaction between the cellular components and trophic factors present in the cortical grafts and the condition of the lesioned host at the time of grafting may yield a host-graft complex with a unique profile.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011805 Quinolinic Acids Dicarboxylic acids with a PYRIDINE backbone. Quinolinic Acids are downstream products of the KYNURENINE pathway which metabolize amino acid TRYPTOPHAN. Acids, Quinolinic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002375 Catalepsy A condition characterized by inactivity, decreased responsiveness to stimuli, and a tendency to maintain an immobile posture. The limbs tend to remain in whatever position they are placed (waxy flexibility). Catalepsy may be associated with PSYCHOTIC DISORDERS (e.g., SCHIZOPHRENIA, CATATONIC), nervous system drug toxicity, and other conditions. Cerea Flexibilitas,Flexibility, Waxy,Anochlesia,Anochlesias,Catalepsies,Flexibilitas, Cerea,Flexibilities, Waxy,Waxy Flexibilities,Waxy Flexibility
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus

Related Publications

M Giordano, and L M Ford, and M T Shipley, and P R Sanberg
May 2002, Movement disorders : official journal of the Movement Disorder Society,
M Giordano, and L M Ford, and M T Shipley, and P R Sanberg
November 2009, The Lancet. Neurology,
M Giordano, and L M Ford, and M T Shipley, and P R Sanberg
January 2006, Cellular and molecular neurobiology,
M Giordano, and L M Ford, and M T Shipley, and P R Sanberg
July 2014, Pharmacology, biochemistry, and behavior,
M Giordano, and L M Ford, and M T Shipley, and P R Sanberg
May 2017, Nature neuroscience,
M Giordano, and L M Ford, and M T Shipley, and P R Sanberg
June 1998, Nature medicine,
M Giordano, and L M Ford, and M T Shipley, and P R Sanberg
March 1999, Experimental neurology,
M Giordano, and L M Ford, and M T Shipley, and P R Sanberg
June 2021, Neurochemical research,
M Giordano, and L M Ford, and M T Shipley, and P R Sanberg
December 2009, The European journal of neuroscience,
Copied contents to your clipboard!