Production and characterization of a monoclonal antibody that cross-reacts with the mycotoxins nivalenol and 4-deoxynivalenol. 2006

C Maragos, and M Busman, and Y Sugita-Konishi
USDA-ARS-NCAUR, 1815 N. University Street, Peoria, IL 61604, USA. maragocm@ncaur.usda.gov

Nivalenol is a mycotoxin produced by certain fungi that are pathogenic to important cereal crops, in particular maize, wheat, and barley. This toxin, 3alpha,4beta,7alpha,15-tetrahydroxy-12,13-epoxytrichothec-9-en-8-one, is found worldwide and is closely related to 4-deoxynivalenol (DON or vomitoxin), a mycotoxin associated with outbreaks of Fusarium head blight in North America. The literature on the toxicity of nivalenol suggests it is similar, if not more toxic, than DON. Despite the development of rapid immunologically based assays for detecting DON, such assays have not existed for detecting nivalenol without chemical modification of the analyte. This paper describes the development of a monoclonal antibody using a nivalenol-glycine protein conjugate. The monoclonal antibody was most specific for an acetylated form of DON (3-Ac-DON), but it exhibited sensitivity and cross-reactivity that were useful for detecting nivalenol and DON at relevant levels without the need to modify either toxin chemically. In an competitive indirect ELISA format, the concentrations of toxins able to inhibit colour development by 50% (IC50) were 1.7, 15.8, 27.5, 68.9, and 1740 ng ml(-1) for the mycotoxins 3-Ac-DON, DON, nivalenol, 15-Ac-DON, and fusarenon-X, respectively. The antibody was also used to develop a competitive direct ELISA for DON and nivalenol, with IC50's of 16.5 ng ml(-1) (DON) and 33.4 ng ml(-1) (nivalenol). These assays are capable of detecting both DON and nivalenol simultaneously, a property that may be useful in regions where these toxins co-occur or in formats, such as immunoaffinity columns, where co-isolation of both toxins is desirable.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009183 Mycotoxins Toxic compounds produced by FUNGI. Fungal Toxins,Mycotoxin,Toxins, Fungal
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005260 Female Females
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000915 Antibody Affinity A measure of the binding strength between antibody and a simple hapten or antigen determinant. It depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, and on the distribution of charged and hydrophobic groups. It includes the concept of "avidity," which refers to the strength of the antigen-antibody bond after formation of reversible complexes. Affinity, Antibody,Antibody Avidity,Avidity, Antibody,Affinities, Antibody,Antibody Affinities,Antibody Avidities,Avidities, Antibody
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody

Related Publications

C Maragos, and M Busman, and Y Sugita-Konishi
September 2013, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
C Maragos, and M Busman, and Y Sugita-Konishi
May 1987, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
C Maragos, and M Busman, and Y Sugita-Konishi
April 1982, Science (New York, N.Y.),
C Maragos, and M Busman, and Y Sugita-Konishi
June 1987, Histopathology,
C Maragos, and M Busman, and Y Sugita-Konishi
January 2012, PloS one,
C Maragos, and M Busman, and Y Sugita-Konishi
January 1984, Journal of biological response modifiers,
Copied contents to your clipboard!