Biological activity of hamster interferon-gamma is modulated by the carboxyl-terminal tail. 2006

Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, 7400 Merton Minter Dr., Mailstop 151, San Antonio, TX 78229-4404, USA.

The Syrian golden hamster (Mesocricetus auratus) is highly susceptible to a number of intracellular pathogens. Interferon-gamma (IFN-gamma), the primary macrophage-activating cytokine, plays a key role in the host defense against intracellular pathogens. The hamster IFN-gamma cDNA encodes a 174 amino acid protein that has an additional 17 amino acids at the carboxyl-terminus compared to IFN-gamma of mice and rats. A homologous C-terminal tail is also found in other non-murine rodents. The biological activity of hamster IFN-gamma had not been investigated previously so we first demonstrated the activity of native IFN-gamma in assays of IFN-gamma-induced receptor signaling and antiviral activity against vesicular stomatitis virus. We then tested the hypothesis that the C-terminal tail of hamster IFN-gamma could influence its biological activity. A truncated hamster IFN-gamma, in which the C-terminal 17 aa were removed by insertion of a stop codon at the position corresponding to the stop codon in the mouse sequence, had approximately 10-fold greater activity than the full length protein when measured in the two bioassays. Polyclonal and monoclonal anti-hamster IFN-gamma antibodies specifically inhibited this biological activity. Collectively, these data indicate that this unique structural feature influences the biological activity of hamster IFN-gamma.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
February 1991, Protein engineering,
Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
January 1990, Annali dell'Istituto superiore di sanita,
Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
March 2004, The Journal of biological chemistry,
Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
June 1998, Biology of reproduction,
Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
July 1996, The Journal of biological chemistry,
Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
May 2003, Archives of biochemistry and biophysics,
Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
December 1998, Journal of neurochemistry,
Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
November 1987, Journal of immunology (Baltimore, Md. : 1950),
Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
July 2005, Journal of neurochemistry,
Weiguo Zhao, and Anais Z Valencia, and Peter C Melby
January 1998, Pathobiology : journal of immunopathology, molecular and cellular biology,
Copied contents to your clipboard!