Different susceptibility of elastase inhibitors to inactivation by proteinases from Staphylococcus aureus and Pseudomonas aeruginosa. 1991

M Sponer, and H P Nick, and H P Schnebli
Pharmaceuticals Division, Ciba-Geigy Ltd., Basel.

Neutrophil elastase is thought to contribute to the lung pathology in patients with cystic fibrosis (CF). Therefore, intrapulmonary application of elastase inhibitors might be beneficial for these patients. Inactivation of such inhibitors by bacterial proteinases, however, is an important consideration in this therapy. We studied the effects of Staphylococcus aureus proteinase (STAP) and Pseudomonas aeruginosa elastase (PsE) on native (alpha 1-AT) and recombinant (rAAT) alpha 1-antitrypsin, recombinant secretory leukocyte proteinase inhibitor (rSLPI) and the leech inhibitor eglin C. All inhibitors were inactivated by these bacterial proteinases showing pronounced differences in their susceptibilities to proteolytic cleavage. Comparing the turnover rate (mol of inhibitor inactivated by one mol bacterial proteinase/min), rAAT and alpha 1-AT were approximately 20,000-fold more susceptible to STAP than rSLPI and 50,000-fold more susceptible than eglin C. Pseudomonas aeruginosa elastase inactivated all inhibitors more rapidly than STAP. rAAT and alpha 1-AT were 13-fold and 17,000-fold more susceptible than rSLPI and eglin C, respectively. Incubation of the rAAT-elastase complex with equimolar amounts of STAP did not result in release of elastase activity. Upon simultaneous addition of STAP and leukocyte elastase to rAAT, there was undisturbed elastase inhibition indicating that complex formation with elastase proceeded at a faster rate than inactivation of rAAT by the bacterial proteinase. From these results of inactivation in vitro and considering the immunogenic potential of the inhibitors studied here, we conclude that rSLPI may be the appropriate choice for anti-elastase therapy in CF.

UI MeSH Term Description Entries
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010196 Pancreatic Elastase A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36. Elastase,Pancreatopeptidase,Elastase I,Pancreatic Elastase I,Elastase I, Pancreatic,Elastase, Pancreatic
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes

Related Publications

M Sponer, and H P Nick, and H P Schnebli
March 1969, Istanbul Universitesi Dishekimligi Fakultesi dergisi = The journal of the Dental Faculty of Istanbul,
M Sponer, and H P Nick, and H P Schnebli
September 2014, Journal of food and drug analysis,
M Sponer, and H P Nick, and H P Schnebli
March 2020, Journal of bacteriology,
M Sponer, and H P Nick, and H P Schnebli
August 1998, International journal of antimicrobial agents,
M Sponer, and H P Nick, and H P Schnebli
December 1982, The American review of respiratory disease,
M Sponer, and H P Nick, and H P Schnebli
October 1986, The Journal of biological chemistry,
M Sponer, and H P Nick, and H P Schnebli
March 2020, Journal of bacteriology,
M Sponer, and H P Nick, and H P Schnebli
August 2005, Emerging infectious diseases,
M Sponer, and H P Nick, and H P Schnebli
June 2007, The British journal of dermatology,
Copied contents to your clipboard!