Line-scanning laser ophthalmoscope. 2006

Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
Physical Sciences Incorporated, 20 New England Business Center, Andover, Massachusetts 01810, USA. hammer@psicorp.com

Scanning laser ophthalmoscopy (SLO) is a powerful imaging tool with specialized applications limited to research and ophthalmology clinics due in part to instrument size, cost, and complexity. Conversely, low-cost retinal imaging devices have limited capabilities in screening, detection, and diagnosis of diseases. To fill the niche between these two, a hand-held, nonmydriatic line-scanning laser ophthalmoscope (LSLO) is designed, constructed, and tested on normal human subjects. The LSLO has only one moving part and uses a novel optical approach to produce wide-field confocal fundus images. Imaging modes include multiwavelength illumination and live stereoscopic imaging with a split aperture. Image processing and display functions are controlled with two stacked prototype compact printed circuit boards. With near shot-noise limited performance, the digital LSLO camera requires low illumination power (<500 microW) at near-infrared wavelengths. The line-scanning principle of operation is examined in comparison to SLO and other imaging modes. The line-scanning approach produces high-contrast confocal images with nearly the same performance as a flying-spot SLO. The LSLO may significantly enhance SLO utility for routine use by ophthalmologists, optometrists, general practitioners, and also emergency medical personnel and technicians in the field for retinal disease detection and other diverse applications.

UI MeSH Term Description Entries
D007089 Image Enhancement Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level. Image Quality Enhancement,Enhancement, Image,Enhancement, Image Quality,Enhancements, Image,Enhancements, Image Quality,Image Enhancements,Image Quality Enhancements,Quality Enhancement, Image,Quality Enhancements, Image
D007090 Image Interpretation, Computer-Assisted Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease. Image Interpretation, Computer Assisted,Computer-Assisted Image Interpretation,Computer-Assisted Image Interpretations,Image Interpretations, Computer-Assisted,Interpretation, Computer-Assisted Image,Interpretations, Computer-Assisted Image
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D012815 Signal Processing, Computer-Assisted Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity. Digital Signal Processing,Signal Interpretation, Computer-Assisted,Signal Processing, Digital,Computer-Assisted Signal Interpretation,Computer-Assisted Signal Interpretations,Computer-Assisted Signal Processing,Interpretation, Computer-Assisted Signal,Interpretations, Computer-Assisted Signal,Signal Interpretation, Computer Assisted,Signal Interpretations, Computer-Assisted,Signal Processing, Computer Assisted
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016247 Information Storage and Retrieval Organized activities related to the storage, location, search, and retrieval of information. Information Retrieval,Data Files,Data Linkage,Data Retrieval,Data Storage,Data Storage and Retrieval,Information Extraction,Information Storage,Machine-Readable Data Files,Data File,Data File, Machine-Readable,Data Files, Machine-Readable,Extraction, Information,Files, Machine-Readable Data,Information Extractions,Machine Readable Data Files,Machine-Readable Data File,Retrieval, Data,Storage, Data
D017076 Computer-Aided Design The use of computers for designing and/or manufacturing of anything, including drugs, surgical procedures, orthotics, and prosthetics. CAD-CAM,Computer-Aided Manufacturing,Computer-Assisted Design,Computer-Assisted Manufacturing,Computer Aided Design,Computer Aided Manufacturing,Computer Assisted Design,Computer Assisted Manufacturing,Computer-Aided Designs,Computer-Assisted Designs,Design, Computer-Aided,Design, Computer-Assisted,Designs, Computer-Aided,Designs, Computer-Assisted,Manufacturing, Computer-Aided,Manufacturing, Computer-Assisted
D018613 Microscopy, Confocal A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible. Confocal Microscopy,Confocal Microscopy, Scanning Laser,Laser Microscopy,Laser Scanning Confocal Microscopy,Laser Scanning Microscopy,Microscopy, Confocal, Laser Scanning,Confocal Laser Scanning Microscopy,Confocal Microscopies,Laser Microscopies,Laser Scanning Microscopies,Microscopies, Confocal,Microscopies, Laser,Microscopies, Laser Scanning,Microscopy, Laser,Microscopy, Laser Scanning,Scanning Microscopies, Laser,Scanning Microscopy, Laser
D019544 Equipment Failure Analysis The evaluation of incidents involving the loss of function of a device. These evaluations are used for a variety of purposes such as to determine the failure rates, the causes of failures, costs of failures, and the reliability and maintainability of devices. Materials Failure Analysis,Prosthesis Failure Analysis,Analysis, Equipment Failure,Analysis, Materials Failure,Analysis, Prosthesis Failure,Analyses, Equipment Failure,Analyses, Materials Failure,Analyses, Prosthesis Failure,Equipment Failure Analyses,Failure Analyses, Equipment,Failure Analyses, Materials,Failure Analyses, Prosthesis,Failure Analysis, Equipment,Failure Analysis, Materials,Failure Analysis, Prosthesis,Materials Failure Analyses,Prosthesis Failure Analyses

Related Publications

Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
July 1981, IEEE transactions on bio-medical engineering,
Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
May 1997, Physics in medicine and biology,
Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
April 1987, Applied optics,
Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
December 1998, Seminars in ophthalmology,
Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
December 2005, Journal of the Optical Society of America. A, Optics, image science, and vision,
Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
January 2006, Bulletin de la Societe belge d'ophtalmologie,
Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
September 2018, Optica,
Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
January 1992, Eye (London, England),
Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
January 2016, Nippon Ganka Gakkai zasshi,
Daniel X Hammer, and R Daniel Ferguson, and Teoman E Ustun, and Chad E Bigelow, and Nicusor V Iftimia, and Robert H Webb
July 1992, Applied optics,
Copied contents to your clipboard!