Somatospiny neurons in the rat lateral septal area are synaptic targets of hippocamposeptal fibers: a combined EM/Golgi and degeneration study. 1990

R L Jakab, and C Leranth
Department of Obstetrics and Gynecology, School of Medicine, Yale University, New Haven, Connecticut 06510.

The mediolateral part of the lateral septal area (LSA) is a common target of hippocamposeptal afferents, neuropeptide containing, catecholaminergic, cholinergic, and GABAergic pericellular baskets of different origins. This specific innervation pattern as well as electrophysiological data concerning this area suggest a convergent input from different sources to particular LSA neuron populations. Light and electron microscopy combined with Golgi impregnation and acute anterograde degeneration techniques following transection of the fimbria-fornix were employed to determine whether LSA neurons with hippocampal input have any characteristic and distinctive morphological signs. About 20% of all Golgi impregnated LSA neurons were found to have somatic spines. All of these somatospiny neurons are synaptic targets of hippocamposeptal fibers. The degenerated hippocamposeptal boutons establish asymmetric synaptic contacts on their soma, somatic and dendritic spines, and on dendritic shafts. Somatospiny neurons located in the most medial and dorsal parts of the LSA seem to project toward the medial septum while all of the others appear to send descending fibers to ventral areas. Somatospiny neuron axons occasionally give out recurrent collaterals. Quantitative analysis on the spatial distribution of the somatospiny neurons revealed that practically all of them are encountered in the mediolateral division of the LSA. This area includes the lateral part of the intermediolateral septal nucleus and adjacent lateral portions of the dorsolateral and the ventrolateral septal nuclei.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012688 Septum Pellucidum A triangular double membrane separating the anterior horns of the LATERAL VENTRICLES of the brain. It is situated in the median plane and bounded by the CORPUS CALLOSUM and the body and columns of the FORNIX (BRAIN). Septum Lucidum,Septum Pelusidum,Supracommissural Septum,Lucidum, Septum,Lucidums, Septum,Pellucidum, Septum,Pelusidum, Septum,Pelusidums, Septum,Septum Lucidums,Septum Pelusidums,Septum, Supracommissural,Septums, Supracommissural,Supracommissural Septums
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings

Related Publications

R L Jakab, and C Leranth
August 1989, The Journal of comparative neurology,
R L Jakab, and C Leranth
September 1988, The Journal of comparative neurology,
Copied contents to your clipboard!