Hypothalamo-septal enkephalinergic fibers terminate on AMPA receptor-containing neurons in the rat lateral septal area. 1997

F Varoqueaux, and C Leranth
Department of Obstetrics and Gynecology, Yale University, School of Medicine, New Haven, Connecticut 06520-8063, USA.

A large number of septal neurons express alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA)-type excitatory glutamate receptors. It has been demonstrated that in the mediolateral part of the rat lateral septum, calbindin-containing neurons are heavily innervated by hypothalamic, enkephalinergic fibers forming exclusively asymmetric synaptic contacts. This connection was suggested to be excitatory. In order to further elucidate this hypothesis, the aim of the present study was to determine whether these enkephalinoceptive neurons express GluR1 and GluR2/3 AMPA receptor subunits. Correlated light and electron microscopic analysis, using single immunostaining for GluR1 and GluR2/3, and double immunostaining for Leu-enkephalin and GluR1 or GluR2/3, was performed on vibratome sections of the rat lateral septal area. The studies revealed that while GluR1 is mainly associated with dendritic and somatic spines, GluR2/3 is mostly present in the perisomatic area. Leu-enkephalin boutons establish asymmetric synaptic contacts at the level of the soma and initial dendrites of both of these cells. A semiquantitative analysis showed that these enkephalin-targeted cells represent 50% of the total number of both GluR1 and GluR2/3-containing lateral septal neurons. These results suggest that: (1) AMPA receptor-expressing neurons appear to be the exclusive recipient of hypothalamic Leu-enkephalin boutons; (2) these enkephalinoceptive neurons contain both GluR1 and GluR2/3 AMPA receptor subunits; however, (3) only the GluR2/3 subtype, located in the perisomatic area, may be associated with Leu-enkephalin-containing inputs.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004743 Enkephalin, Leucine One of the endogenous pentapeptides with morphine-like activity. It differs from MET-ENKEPHALIN in the LEUCINE at position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Leucine Enkephalin,5-Leucine Enkephalin,Leu(5)-Enkephalin,Leu-Enkephalin,5 Leucine Enkephalin,Enkephalin, 5-Leucine,Leu Enkephalin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012688 Septum Pellucidum A triangular double membrane separating the anterior horns of the LATERAL VENTRICLES of the brain. It is situated in the median plane and bounded by the CORPUS CALLOSUM and the body and columns of the FORNIX (BRAIN). Septum Lucidum,Septum Pelusidum,Supracommissural Septum,Lucidum, Septum,Lucidums, Septum,Pellucidum, Septum,Pelusidum, Septum,Pelusidums, Septum,Septum Lucidums,Septum Pelusidums,Septum, Supracommissural,Septums, Supracommissural,Supracommissural Septums
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

F Varoqueaux, and C Leranth
December 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
F Varoqueaux, and C Leranth
February 1999, The American journal of physiology,
Copied contents to your clipboard!