Expression of functional thrombin receptors in xenopus oocytes injected with human endothelial cell mRNA. 1990

E Pipili-Synetos, and M C Gershengorn, and E A Jaffe
Department of Medicine, Cornell University Medical College, New York, NY 10021.

Human endothelial cell thrombin receptors were functionally expressed in Xenopus laevis oocytes by injection of RNA extracted from human umbilical vein endothelial cells. Oocytes injected with endothelial cell RNA responded to thrombin with a Ca2(+)-dependent depolarizing current whose size depended on the amount of RNA injected. In oocytes expressing thrombin receptors, thrombin caused homologous but not heterologous desensitization. Both the catalytic and anion-binding exosites of thrombin were necessary to elicit depolarizing currents. Thus, Xenopus laevis oocytes injected with mRNA from human endothelial cells express Ca2(+)-dependent thrombin receptors which share many common features with thrombin receptors on intact endothelial cells. Xenopus oocytes may, therefore, be used as a screening system in the expression cloning of the endothelial cell thrombin receptor.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E Pipili-Synetos, and M C Gershengorn, and E A Jaffe
March 1990, FEBS letters,
E Pipili-Synetos, and M C Gershengorn, and E A Jaffe
February 1991, Japanese journal of pharmacology,
E Pipili-Synetos, and M C Gershengorn, and E A Jaffe
September 1987, Brain research,
E Pipili-Synetos, and M C Gershengorn, and E A Jaffe
March 1994, Brain research. Molecular brain research,
E Pipili-Synetos, and M C Gershengorn, and E A Jaffe
December 1989, FEBS letters,
E Pipili-Synetos, and M C Gershengorn, and E A Jaffe
June 1991, Neuroscience research,
E Pipili-Synetos, and M C Gershengorn, and E A Jaffe
February 1990, Brain research. Molecular brain research,
E Pipili-Synetos, and M C Gershengorn, and E A Jaffe
June 1990, Molecular pharmacology,
E Pipili-Synetos, and M C Gershengorn, and E A Jaffe
May 1992, Biochemical and biophysical research communications,
Copied contents to your clipboard!