Functional relationship between cyclic AMP-dependent protein phosphorylation and platelet inhibition. 1990

W Siess, and E G Lapetina
Division of Cell Biology, Burroughs Wellcome Co., Research Triangle Park, NC 27709.

Exposure of human platelets to prostacyclin (PGI2), iloprost or prostaglandin E1 (PGE1) elicits the cyclic AMP-dependent phosphorylation of proteins of 22, 24, 30, 39, 50, 60 and 250 kDa (P22, P24 etc.). P22 was recently identified as rap 1B, a ras-like protein, and P24 was shown to be the beta-chain of glycoprotein Ib. We found that cyclic AMP-dependent phosphorylation of all proteins except P22 was maximal 1 min after exposure of platelets to PGI2, iloprost or PGE1; maximal phosphorylation of P22 occurred after 45 min of incubation. Inhibition of thrombin-induced platelet activation required only a 30 s incubation with PGI2 or iloprost; at this time phosphorylation of P22 was only slightly increased. Although at maximal concentrations PGI2 was more potent than PGE1 in inhibiting thrombin-induced platelet activation, no difference in the degree and the kinetics of cyclic AMP-dependent protein phosphorylation was found. Platelets that had been preincubated and washed in the presence of PGE1 and later resuspended in the absence of PGE1 responded fully to activation by thrombin despite maximal phosphorylation of P22 and P24. Furthermore, addition of PGI2 to PGE1-washed platelets prevented thrombin-induced platelet activation, but did not evoke further phosphorylation of P22 or P24. Phosphorylation of P39 and P50 correlated better with PGI2-induced inhibition of platelet activation. In experiments in which PGE1-induced inhibition of platelet activation was overcome by the addition of thrombin, no dephosphorylation of proteins phosphorylated by cyclic AMP-dependent kinases was observed. These experiments indicate that: (a) phosphorylation of rap 1B and glycoprotein Ib is not related to platelet inhibition by cyclic AMP; (b) phosphorylation of other proteins such as P39 and P50 probably plays a role in mediating cyclic AMP-dependent platelet inhibition; (c) reactions other than cyclic AMP-dependent protein phosphorylation may participate in platelet inhibition by cyclic AMP.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010975 Platelet Aggregation Inhibitors Drugs or agents which antagonize or impair any mechanism leading to blood platelet aggregation, whether during the phases of activation and shape change or following the dense-granule release reaction and stimulation of the prostaglandin-thromboxane system. Antiaggregants, Platelet,Antiplatelet Agent,Antiplatelet Agents,Antiplatelet Drug,Blood Platelet Aggregation Inhibitor,Blood Platelet Antagonist,Blood Platelet Antiaggregant,PAR-1 Antagonists,Platelet Aggregation Inhibitor,Platelet Antagonist,Platelet Antagonists,Platelet Antiaggregant,Platelet Antiaggregants,Platelet Inhibitor,Protease-Activated Receptor-1 Antagonists,Antiplatelet Drugs,Blood Platelet Aggregation Inhibitors,Blood Platelet Antagonists,Blood Platelet Antiaggregants,Platelet Inhibitors,Agent, Antiplatelet,Aggregation Inhibitor, Platelet,Antagonist, Blood Platelet,Antagonist, Platelet,Antiaggregant, Blood Platelet,Antiaggregant, Platelet,Drug, Antiplatelet,Inhibitor, Platelet,Inhibitor, Platelet Aggregation,PAR 1 Antagonists,Platelet Antagonist, Blood,Platelet Antiaggregant, Blood,Protease Activated Receptor 1 Antagonists
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000527 Alprostadil A potent vasodilator agent that increases peripheral blood flow. PGE1,Prostaglandin E1,Caverject,Edex,Lipo-PGE1,Minprog,Muse,PGE1alpha,Prostaglandin E1alpha,Prostavasin,Prostin VR,Prostine VR,Sugiran,Vasaprostan,Viridal,Lipo PGE1
D015539 Platelet Activation A series of progressive, overlapping events, triggered by exposure of the PLATELETS to subendothelial tissue. These events include shape change, adhesiveness, aggregation, and release reactions. When carried through to completion, these events lead to the formation of a stable hemostatic plug. Activation, Platelet,Activations, Platelet,Platelet Activations
D016285 Iloprost An eicosanoid, derived from the cyclooxygenase pathway of arachidonic acid metabolism. It is a stable and synthetic analog of EPOPROSTENOL, but with a longer half-life than the parent compound. Its actions are similar to prostacyclin. Iloprost produces vasodilation and inhibits platelet aggregation. Ciloprost,Ventavis,ZK-36374,ZK 36374,ZK36374

Related Publications

W Siess, and E G Lapetina
January 1993, Advances in experimental medicine and biology,
W Siess, and E G Lapetina
January 1980, Annual review of pharmacology and toxicology,
W Siess, and E G Lapetina
February 2000, The Journal of biological chemistry,
W Siess, and E G Lapetina
December 1989, Biochemical Society transactions,
W Siess, and E G Lapetina
October 1980, Metabolism: clinical and experimental,
W Siess, and E G Lapetina
February 1977, Biochemical and biophysical research communications,
W Siess, and E G Lapetina
December 1982, The Journal of dermatology,
Copied contents to your clipboard!