Hematopoietic growth factors: overview and clinical applications, Part II. 1990

B E Robinson, and P J Quesenberry
University of Virginia Health Sciences Center, Charlottesville 22908.

The growth and differentiation of blood cells is regulated by a group of at least 12 glycoproteins, collectively known as hematopoietic growth factors. Advances in protein biochemistry and molecular genetics have provided the tools for the bulk production of these hormones for clinical application. Clinical trials of macrophage colony-stimulating factor, granulocyte macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and interleukin-3 have all demonstrated significant effects on the peripheral blood counts of the recipients. The clinical usefulness of at least two of these agents in ameliorating post-chemotherapy myelosuppression, in the treatment of other cytopenias, and in enhancing engraftment after bone marrow transplantation has already been demonstrated. Potential applications to the therapy and diagnosis of other clinical disorders is under study. The history of the elucidation of these growth factors, our current understanding of their properties, interactions, and clinical effects, and the potential prospects for their future use in the manipulation of human blood cell production are the subject of this review.

UI MeSH Term Description Entries
D007378 Interleukins Soluble factors which stimulate growth-related activities of leukocytes as well as other cell types. They enhance cell proliferation and differentiation, DNA synthesis, secretion of other biologically active molecules and responses to immune and inflammatory stimuli. Interleukin
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D004921 Erythropoietin Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016173 Macrophage Colony-Stimulating Factor A mononuclear phagocyte colony-stimulating factor (M-CSF) synthesized by mesenchymal cells. The compound stimulates the survival, proliferation, and differentiation of hematopoietic cells of the monocyte-macrophage series. M-CSF is a disulfide-bonded glycoprotein dimer with a MW of 70 kDa. It binds to a specific high affinity receptor (RECEPTOR, MACROPHAGE COLONY-STIMULATING FACTOR). CSF-1,CSF-M,Colony-Stimulating Factor 1,Colony-Stimulating Factor, Macrophage,M-CSF,Colony Stimulating Factor 1,Colony Stimulating Factor, Macrophage
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor
D016179 Granulocyte Colony-Stimulating Factor A glycoprotein of MW 25 kDa containing internal disulfide bonds. It induces the survival, proliferation, and differentiation of neutrophilic granulocyte precursor cells and functionally activates mature blood neutrophils. Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes and macrophages of leukemic myeloid cell lines. Colony-Stimulating Factor, Granulocyte,G-CSF,Myeloid Growth Factor,Colony Stimulating Factor, Granulocyte,Factor, Granulocyte Colony-Stimulating,Factor, Myeloid Growth,Granulocyte Colony Stimulating Factor,Growth Factor, Myeloid

Related Publications

B E Robinson, and P J Quesenberry
October 1996, Neonatal network : NN,
B E Robinson, and P J Quesenberry
September 1988, Lakartidningen,
B E Robinson, and P J Quesenberry
January 1993, Clinical laboratory science : journal of the American Society for Medical Technology,
B E Robinson, and P J Quesenberry
April 1995, Journal of clinical oncology : official journal of the American Society of Clinical Oncology,
B E Robinson, and P J Quesenberry
November 1989, The New England journal of medicine,
B E Robinson, and P J Quesenberry
June 1992, Casopis lekaru ceskych,
B E Robinson, and P J Quesenberry
July 1994, Current opinion in hematology,
B E Robinson, and P J Quesenberry
October 1996, Trends in biotechnology,
B E Robinson, and P J Quesenberry
January 1990, International journal of cell cloning,
B E Robinson, and P J Quesenberry
January 1990, Przeglad lekarski,
Copied contents to your clipboard!