Effects of OKM5, a monoclonal antibody to glycoprotein IV, on platelet aggregation and thrombospondin surface expression. 1990

M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
Department of Biochemistry, University of Texas Health Science Center, Tyler.

The monoclonal antibody, OKM5, recognizes an 88-Kd monocyte membrane protein and also binds to the platelet membrane protein, GPIV (GPIIIb, CD36). In this study, we have found that the OKM5 target epitope is present at approximately 12,000 copies per platelet and that interaction with the antibody has both stimulatory and inhibitory effects on platelet function. In the absence of other stimuli, OKM5 induced platelet aggregation, secretion, and expression of fibrinogen receptors. These stimulatory responses required intact antibody as F(ab')2 fragments were not active but blocked the stimulatory activity of the intact antibody. In contrast, exposure of platelets to OKM5 followed by another strong stimulus such as thrombin resulted in a marked suppression of fibrinogen, fibronectin, and von Willebrand factor binding to the cells. This effect was not noted when a weak stimulus, adenosine diphosphate, was the second agonist. At OKM5 concentrations that interfered with fibrinogen binding to thrombin-stimulated platelets by 80% to 90%, platelet binding of exogenous thrombospondin, or surface expression of endogenous thrombospondin was not affected. The inhibitory effect of OKM5 on fibrinogen binding to thrombin-stimulated platelets was related to the formation of massive platelet aggregates in the samples. These results show that interaction of OKM5 with its target antigen on platelets can elicit diverse functional responses from the cells.

UI MeSH Term Description Entries
D010973 Platelet Adhesiveness The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces. Adhesiveness, Platelet,Adhesivenesses, Platelet,Platelet Adhesivenesses
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation
D014841 von Willebrand Factor A high-molecular-weight plasma protein, produced by endothelial cells and megakaryocytes, that is part of the factor VIII/von Willebrand factor complex. The von Willebrand factor has receptors for collagen, platelets, and ristocetin activity as well as the immunologically distinct antigenic determinants. It functions in adhesion of platelets to collagen and hemostatic plug formation. The prolonged bleeding time in VON WILLEBRAND DISEASES is due to the deficiency of this factor. Factor VIII-Related Antigen,Factor VIIIR-Ag,Factor VIIIR-RCo,Plasma Factor VIII Complex,Ristocetin Cofactor,Ristocetin-Willebrand Factor,von Willebrand Protein,Factor VIII Related Antigen,Factor VIIIR Ag,Factor VIIIR RCo,Ristocetin Willebrand Factor

Related Publications

M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
May 1985, Proceedings of the National Academy of Sciences of the United States of America,
M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
January 1991, Biorheology,
M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
January 1988, European journal of biochemistry,
M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
January 1990, Haematologica,
M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
December 1981, British journal of haematology,
M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
January 1991, Platelets,
M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
August 1989, The Journal of clinical investigation,
M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
August 1997, Thrombosis and haemostasis,
M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
October 1991, Journal of cutaneous pathology,
M L Aiken, and M H Ginsberg, and V Byers-Ward, and E F Plow
June 1993, Thrombosis research,
Copied contents to your clipboard!