A novel oligoribonuclease of Escherichia coli. II. Mechanism of action. 1975

A K Datta, and K Niyogi

Detailed studies of the mechanism of action of the novel oligoribonuclease of Escherichia coli described in the previous paper (1) led to the following conclusions. 1. The enzyme prefers a free 3'-hydroxyl group for its action. 2. The enzyme attacks the oligoribonucleotide substrate in a sequential manner from the 3' end producing 5'-ribonucleotides. 3. The mode of attack appears to be processive; the enzyme acts by degrading one oligoribonucleotide chain to completion before proceeding to the hydrolysis of another chain. 4. The reaction rate is inversely proportional to the chain length of the substrate; however, the enzyme has a higher affinity for longer chains. 5. The enzyme activity is markedly inhibited by secondary structure; oligoribonucleotides combined with complementary polyribonucleotides are attacked poorly below the melting temperature of the complex and efficiently above the melting temperature. 6. The enzyme is inhibited by 5'-nucleotides of adenine and guanine; those of cytosine and uracil have a much smaller effect. The enzyme is not inhibited by 3'-nucleotides. 7. Studies with dinucleoside monophosphate show highest reaction rates with pyrimidine sequences in the order: CpCgreater than UpUgreater than CpUgreater than UpC. The presence of guanine at the 3' end is strongly inhibitory, and reaction rates are CpGgreater than UpG=ApGgreater than GpG.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D011072 Poly U A group of uridine ribonucleotides in which the phosphate residues of each uridine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Polyuridylic Acids,Uracil Polynucleotides,Poly(rU),Acids, Polyuridylic,Polynucleotides, Uracil
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012910 Snake Venoms Solutions or mixtures of toxic and nontoxic substances elaborated by snake (Ophidia) salivary glands (Duvernoy's gland) for the purpose of killing prey or disabling predators and delivered by grooved or hollow fangs. They usually contain enzymes, toxins, and other factors. Duvernoy's Gland Secretion,Duvernoy's Secretion,Snake Toxin,Snake Toxins,Snake Venom,Duvernoy Gland Secretion,Duvernoy Secretion,Duvernoys Gland Secretion,Duvernoys Secretion,Secretion, Duvernoy's,Secretion, Duvernoy's Gland,Toxin, Snake,Venom, Snake
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

A K Datta, and K Niyogi
April 2004, Acta crystallographica. Section D, Biological crystallography,
A K Datta, and K Niyogi
September 1983, The Journal of biological chemistry,
A K Datta, and K Niyogi
July 1995, Journal of bacteriology,
A K Datta, and K Niyogi
January 1971, The Journal of biological chemistry,
A K Datta, and K Niyogi
December 1987, Biochemistry,
A K Datta, and K Niyogi
April 1989, Biochemistry,
A K Datta, and K Niyogi
July 1974, The Journal of biological chemistry,
A K Datta, and K Niyogi
January 2006, Journal of bacteriology,
A K Datta, and K Niyogi
January 1987, The Journal of biological chemistry,
Copied contents to your clipboard!