Heteroleptic tris-chelates of ruthenium(II): synthesis, spectral characterisation and electrochemical properties. 2007

Prithwiraj Byabartta
Departmento de Quimica Inorganica, The Universidad de Zaragaza, Zaragaza, Spain. prithwis33@yahoo.com

A facile reaction of cis-trans-cis-RuCl(2)(RaaiR')(2) [RaaiR'=1-alkyl-2-(arylazo)imidazole, m-R-C(6)H(4)-NN-C(3)H(2)-NN-1-R', where R=H (a), OMe (b), NO(2) (c) and R'=Me (1), Et (2) and CH(2)Ph (3)] either with 2,2'-bipyridine (bpy) and AgNO(3) followed by NaClO(4) or [Ag(bpy)(2)](ClO(4)) in boiling acetone has isolated red-brown [Ru(bpy)(RaaiR')(2)](ClO(4))(2) (1a-c, 2a-c, 3a-c). The maximum molecular peak of [Ru(bpy)(OMeaaiMe)(2)](ClO(4))(2) (1b) is observed at m/z 888.01 (100%) in the FAB mass spectrum. IR spectra of the complexes show CN and NN stretching at 1590 and 1370cm(-1) which is red shifted by 40 and 90cm(-1) from the free ligand value supports Ru-azo nitrogen pi bonding interaction. The emission spectra in frozen glass (77K) are sharper and considerably more intense than the room temperature spectra. The (1)H NMR spectral measurements suggest methylene, -CH(2)-, in RaaiEt gives a complex AB type multiplet while in RaaiCH(2)Ph it shows AB type quartets. Considering two arylazoimidazole moieties there are 20 different carbon atoms in the molecule which gives a total of 20 different peaks in the (13)C NMR spectrum. In the (1)H-(1)H COSY spectrum of the present complexes, absence of any off-diagonal peaks extending from delta=14.12 and 9.55ppm confirm their assignment of no proton on N(1) and N(3), respectively. Contour peaks in the (1)H-(13)C HMQC spectrum in the present complexes, the absence of any contours at delta=147.12, 160.76, 155.67 and 157.68 ppm assign them to the C(2), C(6), C(8) and C(e and e'') carbon atoms, respectively. Cyclic voltammogram shows Ru(III)/Ru(II) redox couple along with three successive ligand reductions. The plot of difference in potential of first oxidation and reduction versus energy of main MLCT band (nu(CT)) is linear. Electrochemical parametrisation of Ru(III)/Ru(II) redox couple determines ligand potential E(L)(L).

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010755 Organophosphates Carbon-containing phosphoric acid derivatives. Included under this heading are compounds that have CARBON atoms bound to one or more OXYGEN atoms of the P( Organophosphate,Phosphates, Organic,Phosphoric Acid Esters,Organopyrophosphates,Acid Esters, Phosphoric,Esters, Phosphoric Acid,Organic Phosphates
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D012428 Ruthenium A hard, brittle, grayish-white rare earth metal with an atomic symbol Ru, atomic number 44, and atomic weight 101.07. It is used as a catalyst and hardener for PLATINUM and PALLADIUM.
D013055 Spectrophotometry, Infrared Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) IR Spectra,Infrared Spectrophotometry,IR Spectras,Spectra, IR
D055672 Static Electricity The accumulation of an electric charge on a object Electrostatic,Electrostatics,Static Charge,Charge, Static,Charges, Static,Electricity, Static,Static Charges

Related Publications

Prithwiraj Byabartta
October 2001, Inorganic chemistry,
Prithwiraj Byabartta
June 2004, Dalton transactions (Cambridge, England : 2003),
Prithwiraj Byabartta
July 2009, Journal of the American Chemical Society,
Prithwiraj Byabartta
February 2011, Angewandte Chemie (International ed. in English),
Copied contents to your clipboard!