Antinociception produced by capsaicin: spinal or peripheral mechanism? 1990

A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
Department of Pharmacology, University College, London, U.K.

We have studied the effects of capsaicin, administered at concentrations found to be antinociceptive in behavioural tests, on nociceptive responses evoked both in spinal dorsal horn neurons in vivo and in spinal ventral roots in vitro. In halothane anesthetized rats, C-fibre evoked input produced by transcutaneous electrical stimulation in the peripheral receptive field was recorded from single wide dynamic range neurons located in superficial and deep dorsal horn of the lumbar spinal cord. This input was reduced by systemic administration of capsaicin at an antinociceptive dose (20 mumol/kg s.c.). Intradermal injections of capsaicin localized to the peripheral receptive field produced a transient increase in C-fibre evoked activity followed by a prolonged period of localized insensitivity to C-fibre stimulation. Spinal i.t. administered capsaicin also produced a rapid but reversible attenuation of peripherally evoked C-fibre input. In a neonatal rat spinal cord-tail preparation maintained in vitro, superfusion of the spinal cord with capsaicin (100-500 nM) produced a transient depolarization which was followed by an attenuation of responses to peripheral noxious heat and to spinal administration of substance P. Similar activity was produced by a prolonged superfusion of the spinal cord with substance P (50-200 nM). An HPLC method was used to estimate the concentration of capsaicin in a number of tissues following s.c. administration at an antinociceptive dose. In addition capsaicin concentrations were determined in the spinal cord following an i.t. administration.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009476 Neurons, Efferent Neurons which send impulses peripherally to activate muscles or secretory cells. Efferent Neurons,Efferent Neuron,Neuron, Efferent
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000700 Analgesics Compounds capable of relieving pain without the loss of CONSCIOUSNESS. Analgesic,Anodynes,Antinociceptive Agents,Analgesic Agents,Analgesic Drugs,Agents, Analgesic,Agents, Antinociceptive,Drugs, Analgesic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
December 1990, Pain,
A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
December 1991, British journal of pharmacology,
A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
October 2000, The Journal of pharmacology and experimental therapeutics,
A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
April 1994, Brain research,
A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
January 1992, The International journal of neuroscience,
A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
January 1999, Life sciences,
A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
January 1992, Life sciences,
A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
April 1993, Brain research,
A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
November 1992, Brain research,
A Dickenson, and N Ashwood, and A F Sullivan, and I James, and A Dray
March 2022, Life sciences,
Copied contents to your clipboard!