A spinal mechanism of action is involved in the antinociception produced by the capsaicin analogue NE 19550 (olvanil). 1990

A Dickenson, and C Hughes, and A Rueff, and A Dray
Sandoz Institute for Medical Research, 5 Gower Place, LondonU.K. Department of Pharmacology, University College, LondonU.K.

We have studied the effect of NE 19550 (olvanil, N-(4-hydroxy-3-methoxyphenyl) methyl-9Z-octadecenamide), a capsaicin analogue with approximately equipotent antinociceptive activity in vivo compared with capsaicin, on nociceptive responses recorded from spinal dorsal horn neurones in vivo and from a spinal ventral root in vitro. In adult rats anaesthetized with halothane, antinociceptive doses of olvanil (20-40 mumol/kg, s.c.) reduced C-fibre responses evoked in wide dynamic range, lumbar dorsal horn neurones, by peripheral transcutaneous electrical stimulation. Intradermal injection of olvanil, localized to a discrete region of the peripheral receptive field, did not activate C-fibres nor change C-fibre evoked activation of dorsal horn neurones. Spinal intrathecal administration of olvanil attenuated C-fibre evoked responses and, at the highest concentration, significantly reduced A beta-fibre evoked activity. In the neonatal rat spinal cord/tail preparation maintained in vitro, superfusion of the cord with olvanil (500 nM-5 microM) did not evoke a depolarization but responses to peripheral noxious stimulation were attenuated. In a similar in vitro preparation of the neonatal rat spinal cord, the release of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) was measured in spinal cord superfusates. Capsaicin (2-10 microM) evoked a large release of CGRP-LI but olvanil (2-10 microM) produced only a small or undetectable release. Following the administration of each substance, however, the release of CGRP-LI evoked by a depolarizing potassium stimulus was significantly attenuated. These data indicate that C-fibre input to the dorsal horn was attenuated by acute systemic doses of olvanil that were antinociceptive in behavioural tests. This effect was unlikely to be due to impairment of C-fibre function by a peripheral locus of action but was more consistent with an action in the spinal cord in which the reduced release of a neurotransmitter substance from afferent nerve terminals may play a prominent role.

UI MeSH Term Description Entries
D007271 Injections, Intradermal The forcing into the skin of liquid medication, nutrient, or other fluid through a hollow needle, piercing the top skin layer. Intradermal Injections,Injection, Intradermal,Intradermal Injection
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000894 Anti-Inflammatory Agents, Non-Steroidal Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects. Analgesics, Anti-Inflammatory,Aspirin-Like Agent,Aspirin-Like Agents,NSAID,Non-Steroidal Anti-Inflammatory Agent,Non-Steroidal Anti-Inflammatory Agents,Nonsteroidal Anti-Inflammatory Agent,Anti Inflammatory Agents, Nonsteroidal,Antiinflammatory Agents, Non Steroidal,Antiinflammatory Agents, Nonsteroidal,NSAIDs,Nonsteroidal Anti-Inflammatory Agents,Agent, Aspirin-Like,Agent, Non-Steroidal Anti-Inflammatory,Agent, Nonsteroidal Anti-Inflammatory,Anti-Inflammatory Agent, Non-Steroidal,Anti-Inflammatory Agent, Nonsteroidal,Anti-Inflammatory Analgesics,Aspirin Like Agent,Aspirin Like Agents,Non Steroidal Anti Inflammatory Agent,Non Steroidal Anti Inflammatory Agents,Nonsteroidal Anti Inflammatory Agent,Nonsteroidal Anti Inflammatory Agents,Nonsteroidal Antiinflammatory Agents
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D015740 Calcitonin Gene-Related Peptide A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator. Calcitonin Gene-Related Peptide I,Calcitonin Gene-Related Peptide II,alpha-CGRP,alpha-Calcitonin Gene-Related Peptide,beta-CGRP,beta-Calcitonin Gene-Related Peptide,Calcitonin Gene Related Peptide,Calcitonin Gene Related Peptide I,Calcitonin Gene Related Peptide II,Gene-Related Peptide, Calcitonin,alpha Calcitonin Gene Related Peptide,beta Calcitonin Gene Related Peptide

Related Publications

A Dickenson, and C Hughes, and A Rueff, and A Dray
October 1990, European journal of pharmacology,
A Dickenson, and C Hughes, and A Rueff, and A Dray
November 1990, Agents and actions,
A Dickenson, and C Hughes, and A Rueff, and A Dray
June 1990, European journal of pharmacology,
A Dickenson, and C Hughes, and A Rueff, and A Dray
July 1997, Pain,
A Dickenson, and C Hughes, and A Rueff, and A Dray
January 1999, Life sciences,
A Dickenson, and C Hughes, and A Rueff, and A Dray
December 1991, British journal of pharmacology,
A Dickenson, and C Hughes, and A Rueff, and A Dray
September 2014, Molecules (Basel, Switzerland),
A Dickenson, and C Hughes, and A Rueff, and A Dray
September 1991, Brain research,
A Dickenson, and C Hughes, and A Rueff, and A Dray
January 1999, Brain research bulletin,
Copied contents to your clipboard!