Progesterone receptor regulation in uterine cells: stimulation by estrogen, cyclic adenosine 3',5'-monophosphate, and insulin-like growth factor I and suppression by antiestrogens and protein kinase inhibitors. 1991

S M Aronica, and B S Katzenellenbogen
Department of Physiology and Biophysics, University of Illinois, Urbana 61801.

Primary uterine cell cultures were used to study multifactor regulation of progesterone receptor (PR) and the signal transduction pathways which may serve to mediate that regulation. Increases in intracellular cAMP, brought about by treatment with cholera toxin plus isobutyl methyl xanthine or by addition of 8-bromo-cAMP, result in 6- to 7-fold increases in the intracellular content of PR as monitored by [3H]R5020 binding and by Western immunoblot using anti-PR antibodies. In these primary cultures of uterine cells isolated from 19-day-old immature rats, 8-bromo-cAMP evokes significant increases in PR by 8 h with maximal increases by 24 h. This time course and magnitude of PR stimulation are similar to those evoked by maximally effective concentrations of estradiol (3 x 10(-9) M) or IGF-I (20 ng/ml). Dose-response studies reveal that 10(-6) to 10(-4) M concentrations of 8-bromo-cAMP (8-Br-cAMP) elicit a maximal response. In contrast, 8-bromo-cGMP over a wide concentration range was unable to elevate cellular PR levels. Under these culture conditions, cell proliferation was not altered by treatment with any of these agents. Although estrogen, cAMP, and insulin-like growth factor I (IGF-I) may act via different pathways to increase PR, the effects evoked by maximally effective concentrations of these agents are not additive implying involvement of a common component. The increases in PR evoked by estradiol, cAMP, or IGF-I are markedly suppressed by treatment with antiestrogen (ICI 164,384) or the cyclic nucleotide-dependent protein kinase inhibitor H8 or the protein kinase A inhibitor PKI, indicating the involvement of the estrogen receptor and phosphorylation pathways in PR regulation by these three agents. The present studies identify cAMP, as well as estrogen and IGF-I, as important regulators of the level of PR in uterine cells and suggest that multiple factors, including those affecting intracellular cAMP levels, might influence responsiveness to progestins via regulation of the intracellular PR content.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011397 Promegestone A synthetic progestin which is useful for the study of progestin distribution and progestin tissue receptors, as it is not bound by transcortin and binds to progesterone receptors with a higher association constant than progesterone. 17,21-Dimethyl-19-nor-4,9-pregnadiene-3,20-dione,Promestone,R-5020,R5020,RU-5020,RU5020,Surgestone,R 5020,RU 5020
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004965 Estrogen Antagonists Compounds which inhibit or antagonize the action or biosynthesis of estrogenic compounds. Estradiol Antagonists,Antagonists, Estradiol,Antagonists, Estrogen
D005260 Female Females

Related Publications

S M Aronica, and B S Katzenellenbogen
October 2000, The Journal of clinical endocrinology and metabolism,
S M Aronica, and B S Katzenellenbogen
January 1988, Journal of neuroscience research,
S M Aronica, and B S Katzenellenbogen
December 1973, The Journal of biological chemistry,
Copied contents to your clipboard!