Stable clathrin: uncoating protein (hsc70) complexes in intact neurons and their axonal transport. 1991

M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.

We have studied the organization of clathrin during its transport in axons. Using immunoprecipitation techniques we have confirmed earlier findings that clathrin is transported as part of slow component b, but we also detect small amounts of clathrin in fast component. As fast component is known to correspond to the transport of membraneous material, including coated vesicle membrane components, our findings suggest that some clathrin in axons undergoes transport in the form of coated membranes and that a portion of the clathrin delivered to axons and axon terminals arrives by way of fast component. The organizational form of clathrin in slow component b (SCb) was examined in more detail, as it is thought to represent a non-membrane-associated species, is relatively long-lived, and at any instant represents the major transport species in axons. We used nondenaturing immunoprecipitation methods with stringent wash procedures to identify other SCb proteins that interact with clathrin. The immunoprecipitates contained major labeled bands that corresponded to clathrin heavy and light chains, along with a prominent 70-kDa band and several minor bands that ranged in apparent Mr from 70,000 to 150,000; the 70-kDa band was shown to be the ATP-dependent uncoating protein by two-dimensional gel electrophoresis. A very similar profile of polypeptides was also immunoprecipitated from extracts of cultured neurons. The results from a variety of control immunoprecipitations, including the use of antisera preadsorbed with purified clathrin trimers or clathrin light chains, indicate that coprecipitation of clathrin and uncoating protein with the other 70,000-150,000-Da polypeptides from SCb reflects specific interactions. Including exogenous uncoating protein in the lysis buffer had no detectable effect on the levels of endogenous uncoating protein recovered in the immunoprecipitates, indicating that complexes of clathrin, uncoating protein, and the other coimmunoprecipitating SCb protein existed in the intact neurons prior to lysis. Finally, a specific and functional association is further supported by the release of uncoating protein, but not the other 70,000-150,000-Da polypeptides, from the immunoprecipitated complexes on the addition of ATP. Collectively, these observations provide the first direct evidence of interaction between clathrin and uncoating protein in intact cells, lend strong support to the concept that uncoating protein plays an intimate role in clathrin dynamics within cells, and reveal a family of 70,000-150,000-Da polypeptides that form a stable nonmembranous association with clathrin in intact cells.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002966 Clathrin The main structural coat protein of COATED VESICLES which play a key role in the intracellular transport between membranous organelles. Each molecule of clathrin consists of three light chains (CLATHRIN LIGHT CHAINS) and three heavy chains (CLATHRIN HEAVY CHAINS) that form a structure called a triskelion. Clathrin also interacts with cytoskeletal proteins.
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
August 1989, Journal of neuroscience research,
M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
October 1996, The Biochemical journal,
M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
November 1985, The Journal of biological chemistry,
M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
October 2001, Neuron,
M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
February 1994, The Journal of biological chemistry,
M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
September 1990, Cell,
M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
January 2008, Molecular biology of the cell,
M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
October 2015, Journal of cell science,
M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
December 2002, The Journal of biological chemistry,
M M Black, and M H Chestnut, and I T Pleasure, and J H Keen
February 2005, The Journal of biological chemistry,
Copied contents to your clipboard!