Human erythrocyte clathrin and clathrin-uncoating protein. 1985

J Q Davis, and V Bennett

Clathrin, a Mr = 72,000 clathrin-associated protein, and myosin were purified in milligram quantities from the same erythrocyte hemolysate fraction. Erythrocyte clathrin closely resembled brain clathrin in several respects: (a) both are triskelions as visualized by electron microscopy with arms 40 nm in length with globular ends and a flexible hinge region in the middle of each arm, and these triskelions assemble into polyhedral "cages" at appropriate pH and ionic strength; (b) both molecules contain heavy chains of Mr = 170,000 that are indistinguishable by two-dimensional maps of 125I-labeled peptides; and (c) both molecules contain light chains of Mr approximately 40,000 in a 1:1 molar ratio with the heavy chain. Erythrocyte clathrin is not identical to brain clathrin since antibody raised against the erythrocyte protein reacts better with erythrocyte clathrin than with brain clathrin and since brain clathrin contains two light chains resolved on sodium dodecyl sulfate gels while the light chain of erythrocyte clathrin migrates as a single band. The erythrocyte Mr = 72,000 clathrin-associated protein is closely related to a protein in brain that mediates ATP-dependent disassembly of clathrin from coated vesicles and binds tightly to clathrin triskelions (Schlossman, D. M., Schmid, S. L., Braell, W. A., and Rothman, J. E. (1984) J. Cell Biol. 99, 723-733). The erythrocyte and brain proteins have identical Mr on sodium dodecyl sulfate gels and identical maps of 125I-labeled peptides, share antigenic sites, and bind tightly to ATP immobilized on agarose. Clathrin and the uncoating protein are not restricted to reticulocytes since equivalent amounts of these proteins are present in whole erythrocyte populations and reticulocyte-depleted erythrocytes. Clathrin is present at 6,000 triskelions/cells, while the uncoating protein is in substantial excess at 250,000 copies/cell.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D002966 Clathrin The main structural coat protein of COATED VESICLES which play a key role in the intracellular transport between membranous organelles. Each molecule of clathrin consists of three light chains (CLATHRIN LIGHT CHAINS) and three heavy chains (CLATHRIN HEAVY CHAINS) that form a structure called a triskelion. Clathrin also interacts with cytoskeletal proteins.
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J Q Davis, and V Bennett
January 1987, The Journal of biological chemistry,
J Q Davis, and V Bennett
November 1993, The Journal of biological chemistry,
J Q Davis, and V Bennett
March 1994, The Journal of biological chemistry,
J Q Davis, and V Bennett
January 2001, Current biology : CB,
J Q Davis, and V Bennett
August 1985, The Journal of biological chemistry,
J Q Davis, and V Bennett
September 1993, Plant physiology,
J Q Davis, and V Bennett
May 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J Q Davis, and V Bennett
December 1995, Nature,
Copied contents to your clipboard!