Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte-macrophage CSF in vivo. 1991

B I Lord, and G Molineux, and Z Pojda, and L M Souza, and J J Mermod, and T M Dexter
Cancer Research Campaign Department of Experimental Haematology, Paterson Institute for Cancer Research, Christie Hospital and Holt Radium Institute, Manchester, UK.

Myeloid cell kinetics in mice treated with pure hematopoietic growth factors have been investigated using tritiated thymidine labeling and autoradiography. Mice were injected subcutaneously with 125 micrograms/kg granulocyte colony-stimulating factor (G-CSF) (in some cases 5 micrograms/kg), or 10 micrograms/kg of granulocyte-macrophage CSF (GM-CSF), or interleukin-3 (IL-3) every 12 hours for 84 hours. 3HTdR labeling was performed in vivo after 3 days of treatment. G-CSF increased the peripheral neutrophil count 14-fold and increased the proportion and proliferation rate of neutrophilic cells in the marrow, suppressing erythropoiesis at the same time. Newly produced mature cells were released into the circulation within 24 hours of labeling, compared with a normal appearance time of about 96 hours. By contrast, GM-CSF and IL-3 had little effect on either marrow cell kinetics or on the rate of release of mature cells, although GM-CSF did stimulate a 50% increase in peripheral neutrophils. Monocyte production was also increased about eightfold by G-CSF and 1.5-fold by GM-CSF, but their peak release was only slightly accelerated. While the peripheral half-lives of the neutrophilic granulocytes were normal, those of the monocytes were dramatically reduced, perhaps due to sequestration in the tissues for functional purposes. The stimulated monocyte production in the case of G-CSF required an additional five cell cycles, a level that might have repercussions on the progenitor compartments.

UI MeSH Term Description Entries
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females

Related Publications

B I Lord, and G Molineux, and Z Pojda, and L M Souza, and J J Mermod, and T M Dexter
November 1994, International journal of cancer,
B I Lord, and G Molineux, and Z Pojda, and L M Souza, and J J Mermod, and T M Dexter
February 1992, British journal of haematology,
B I Lord, and G Molineux, and Z Pojda, and L M Souza, and J J Mermod, and T M Dexter
October 1991, Pharmacology & therapeutics,
B I Lord, and G Molineux, and Z Pojda, and L M Souza, and J J Mermod, and T M Dexter
February 1988, Blood,
B I Lord, and G Molineux, and Z Pojda, and L M Souza, and J J Mermod, and T M Dexter
July 1993, Stem cells (Dayton, Ohio),
Copied contents to your clipboard!