Comparative effects in vivo of recombinant murine interleukin 3, natural murine colony-stimulating factor-1, and recombinant murine granulocyte-macrophage colony-stimulating factor on myelopoiesis in mice. 1987

H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell

Purified murine colony-stimulating factors (CSF) recombinant interleukin 3 (IL-3), natural CSF-1, and recombinant granulocyte-macrophage (GM) CSF were assessed in vivo for their effects on BDF1 mouse bone marrow and spleen granulocyte-macrophage (CFU-GM), erythroid (BFU-E), and multipotential (CFU-GEMM) progenitor cells in untreated mice and in mice pretreated with purified iron-saturated human lactoferrin (LF). The CSF and LF preparations did not contain detectable endotoxin (less than 0.1 ng). Mice pretreated with LF were more sensitive to the effects of CSF. In mice pretreated with LF, 2,000 U IL-3 or 20,000 U CSF-1 significantly enhanced the cycling status and absolute numbers of all progenitors, whereas 20,000 U GM-CSF significantly increased the cycling status of CFU-GM and CFU-GEMM, but had no effect on cycling of BFU-E or on numbers of any of the progenitors. The effects of CSF in mice pretreated with LF were not mimicked by 0.1-100 ng E. coli lipopolysaccharide.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D007781 Lactoferrin An iron-binding protein that was originally characterized as a milk protein. It is widely distributed in secretory fluids and is found in the neutrophilic granules of LEUKOCYTES. The N-terminal part of lactoferrin possesses a serine protease which functions to inactivate the TYPE III SECRETION SYSTEM used by bacteria to export virulence proteins for host cell invasion. Lactotransferrin
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell
August 1988, Behring Institute Mitteilungen,
H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell
October 1987, Experimental hematology,
H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell
January 1988, Journal of immunology (Baltimore, Md. : 1950),
H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell
January 1991, Blood cells,
H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell
January 1987, Blood cells,
H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell
June 1987, The Journal of clinical investigation,
H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell
October 1991, Pharmacology & therapeutics,
H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell
October 1990, Blood,
H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell
September 1988, Blood,
H E Broxmeyer, and D E Williams, and S Cooper, and R K Shadduck, and S Gillis, and A Waheed, and D L Urdal, and D C Bicknell
May 1991, Blood,
Copied contents to your clipboard!