cDNA sequence and bacterial expression of mouse liver sterol carrier protein-2. 1991

D Moncecchi, and A Pastuszyn, and T J Scallen
Department of Biochemistry, School of Medicine, University of New Mexico, Albuquerque 87131.

Sterol carrier protein-2 (SCP-2) is an intracellular protein of Mr 13,096. In vitro studies have shown that it is involved in the transport and metabolism of cholesterol. This protein is believed to participate in these activities by forming a stoichiometric complex with the sterol. Because these activities occur in different intracellular locations, i.e. mitochondria, peroxisomes, and cytosol, it can be predicted that SCP-2 targets to these sites. In this report we show that a mouse cDNA (785 base pairs) encodes a precursor form of SCP-2 containing a N-terminal presequence and an additional C-terminal residue. These additional amino acid residues are found in proteins targeted to the mitochondria and peroxisomes, respectively. These signals are not found in SCP-2 purified from rat liver cytosol which is believed to be a cytosolic form. Northern analysis shows that there are four species of mRNA which hybridize to a SCP-2-specific probe at 1.0, 1.7, 2.2, and 2.9 kilobases. Southern analysis shows that the gene is distributed over a large amount of DNA or that there are multiple genes. We have cloned the cytosolic/peroxisomal form of mouse SCP-2 into the Escherichia coli expression vector pKK233-2 and have expressed and purified recombinant mouse SCP-2, Mr 13,034. The purified recombinant SCP-2 is immunoreactive to rabbit anti-rat SCP-2 antibody. It also has biological activity equivalent to homogeneous rat liver SCP-2 in stimulating the microsomal conversion of 7-dehydrocholesterol to cholesterol and in the esterification of cholesterol by acyl-CoA cholesterol acyltransferase by rat liver microsomes.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

D Moncecchi, and A Pastuszyn, and T J Scallen
January 1991, The Journal of biological chemistry,
D Moncecchi, and A Pastuszyn, and T J Scallen
July 1993, Archives of biochemistry and biophysics,
D Moncecchi, and A Pastuszyn, and T J Scallen
January 1991, Proceedings of the National Academy of Sciences of the United States of America,
D Moncecchi, and A Pastuszyn, and T J Scallen
November 1992, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
D Moncecchi, and A Pastuszyn, and T J Scallen
June 2000, Biochimica et biophysica acta,
D Moncecchi, and A Pastuszyn, and T J Scallen
July 1996, Biochimica et biophysica acta,
D Moncecchi, and A Pastuszyn, and T J Scallen
May 1993, Journal of lipid research,
D Moncecchi, and A Pastuszyn, and T J Scallen
September 1987, The Journal of biological chemistry,
D Moncecchi, and A Pastuszyn, and T J Scallen
August 2004, Journal of lipid research,
D Moncecchi, and A Pastuszyn, and T J Scallen
February 2006, Molecular and cellular biochemistry,
Copied contents to your clipboard!