Analysis of ATF6 activation in Site-2 protease-deficient Chinese hamster ovary cells. 2006

Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.

Mammalian transcription factor ATF6 is constitutively synthesized as a type II transmembrane protein embedded in the endoplasmic reticulum (ER). It is activated when unfolded proteins are accumulated in the ER under ER stress through a process called regulated intramembrane proteolysis (Rip), in which ATF6 is transported from the ER to the Golgi apparatus where it undergoes sequential cleavage by Site-1 and Site-2 proteases. The cytosolic transcription factor domain of ATF6 liberated from the Golgi membrane enters the nucleus where it activates transcription of ER-localized molecular chaperones and folding enzymes, leading to the maintenance of the homeostasis of the ER. Here, we analyzed M19 cells, a mutant of Chinese hamster ovary cells deficient in Site-2 protease. It was previously shown that M19 cells are defective in the induction of mRNA encoding the major ER chaperone BiP. In M19 cells, ATF6 was not converted from the membrane-bound precursor form to the cleaved and nuclear form as expected. Moreover, some of the ATF6 was constitutively relocated to the Golgi apparatus, where it was cleaved by Site-1 protease, and remained associated with the Golgi apparatus, indicating that the ER of M19 cells was constitutively stressed. Consistent with this notion, the two other ER stress response mediators, IRE1 and PERK, were also constitutively activated in M19 cells. M19 cells showed inefficient secretion of a model protein. These results suggest that Rip-mediated activation of ATF6 is important for the homeostasis of the ER in not only ER-stressed but also unstressed cells.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress

Related Publications

Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
June 1998, The Journal of biological chemistry,
Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
September 1992, The Journal of biological chemistry,
Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
January 1994, Advances in experimental medicine and biology,
Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
April 1982, The Journal of biological chemistry,
Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
November 2012, Journal of proteome research,
Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
June 1992, Biochimica et biophysica acta,
Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
January 2007, The international journal of biochemistry & cell biology,
Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
January 1983, Methods in enzymology,
Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
January 1987, Methods in enzymology,
Satomi Nadanaka, and Hiderou Yoshida, and Ryuichiro Sato, and Kazutoshi Mori
December 2018, Analytical chemistry,
Copied contents to your clipboard!