Partitioning of cells in dextran-poly(ethylene glycol) aqueous phase systems. A study of settling time, vessel geometry and sedimentation effects on the efficiency of separation. 1991

H Walter, and E J Krob, and L Wollenberger
Laboratory of Chemical Biology, Veterans Affairs Medical Center, Long Beach, CA 90822.

The effect of prolonged settling times (up to 2 h), in high- and low-phase columns, on the cell partition ratios measured and on the separability of cell populations was examined. With closely related cell populations, modelled by rat erythrocytes in which subpopulations of red blood cells of distinct age were labeled isotopically, it was found that partitioning proceeds over the entire time period examined as evidenced by the continuous change in relative specific activity of cells in the top phase as the partition ratio falls. In control cell sedimentation experiments in top phase there was almost no change in the quantity of cells present when vertical settling (i.e., high-phase columns) was used and no separation of specific subpopulations was found. In the horizontal settling mode the initially higher cell partition ratio, as compared to vertical settling, decreased to a greater extent with longer time intervals; a given purity of cells only being obtained at a lower partition ratio than in the vertical settling mode. Cell sedimentation in top phase was appreciable with time in the horizontal settling mode but did not result in a separation of cell subpopulations. The effect of relative cell partition ratios and sizes in high- and low-phase columns on the efficiency of separation was examined by use of rat or sheep 51Cr-labeled red cells mixed with an excess of human unlabeled erythrocytes. Rat and sheep red cells are appreciably smaller than human erythrocytes. Rat red cells have higher, and sheep red cells lower partition ratios than human erythrocytes. With vertical settling, over a 2-h period, there is no appreciable contribution to the change in relative specific activities by cell sedimentation. However, the more rapid sedimentation of the larger human red cells has, with time, a measurable effect on the relative specific activities obtained during cell partitioning when run in the horizontal mode: enhancing the rat-human and diminishing the sheep-human cell separations. Partitioning cells in high-phase columns is of advantage with respect to increasing separation efficiency and virtually eliminating the influence of other physical parameters (e.g., cell size). Since the cell partitioning process continues for long periods of time, yielding ever-lower partition ratios with increasing proportions of cells with higher P values, a time may be selected which balances desired relative cell purity and yield.

UI MeSH Term Description Entries
D007504 Iron Radioisotopes Unstable isotopes of iron that decay or disintegrate emitting radiation. Fe atoms with atomic weights 52, 53, 55, and 59-61 are radioactive iron isotopes. Radioisotopes, Iron
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002860 Chromium Radioisotopes Unstable isotopes of chromium that decay or disintegrate emitting radiation. Cr atoms with atomic weights of 46-49, 51, 55, and 56 are radioactive chromium isotopes. Radioisotopes, Chromium
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004905 Erythrocyte Aging The senescence of RED BLOOD CELLS. Lacking the organelles that make protein synthesis possible, the mature erythrocyte is incapable of self-repair, reproduction, and carrying out certain functions performed by other cells. This limits the average life span of an erythrocyte to 120 days. Erythrocyte Survival,Aging, Erythrocyte,Survival, Erythrocyte
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli

Related Publications

H Walter, and E J Krob, and L Wollenberger
September 1992, Journal of chromatography,
H Walter, and E J Krob, and L Wollenberger
April 2012, Journal of chromatography. A,
H Walter, and E J Krob, and L Wollenberger
January 2008, Journal of chromatography. A,
H Walter, and E J Krob, and L Wollenberger
July 1972, Biochemistry,
H Walter, and E J Krob, and L Wollenberger
January 1990, Biotechnology progress,
H Walter, and E J Krob, and L Wollenberger
January 1994, Biotechnology progress,
H Walter, and E J Krob, and L Wollenberger
January 2004, Biotechnology progress,
Copied contents to your clipboard!