Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a protein kinase C delta pathway. 2007

Yutong Wang, and John F Oram
Department of Medicine, University of Washington, Seattle, WA 98195, USA.

Abnormal HDL metabolism among patients with diabetes and insulin resistance may contribute to their increased risk of atherosclerosis. ABCA1 mediates the transport of cholesterol and phospholipids from cells to HDL apolipoproteins and thus modulates HDL levels and atherogenesis. Unsaturated fatty acids, which are increased in diabetes, impair the ABCA1 pathway in cultured cells by destabilizing ABCA1 protein. We previously reported that unsaturated fatty acids destabilize ABCA1 in murine macrophages and ABCA1-transfected baby hamster kidney cells by increasing its serine phosphorylation through a phospholipase D (PLD) pathway. Here, we examined the cellular pathway downstream of PLD that mediates the ABCA1-destabilizing effects of unsaturated fatty acids. The protein kinase C delta (PKCdelta)-specific inhibitor rottlerin and PKCdelta small interfering RNA completely abolished the ability of unsaturated fatty acids to inhibit lipid transport activity, to reduce protein levels, and to increase serine phosphorylation of ABCA1, implicating a role for PKCdelta in the ABCA1-destabilizing effects of fatty acids. These data indicate that unsaturated fatty acids destabilize ABCA1 by activating a PKCdelta pathway that phosphorylates ABCA1 serines.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004075 Diglycerides Glycerides composed of two fatty acids esterified to the trihydric alcohol GLYCEROL. There are two possible forms that exist: 1,2-diacylglycerols and 1,3-diacylglycerols. Diacylglycerol,Diacylglycerols
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051745 Protein Kinase C-delta A ubiquitously expressed protein kinase that is involved in a variety of cellular SIGNAL PATHWAYS. Its activity is regulated by a variety of signaling protein tyrosine kinase. PKC-delta Serine-Threonine Kinase,Kinase C-delta, Protein,PKC delta Serine Threonine Kinase,Protein Kinase C delta,Serine-Threonine Kinase, PKC-delta

Related Publications

Yutong Wang, and John F Oram
November 1993, Biochemical Society transactions,
Yutong Wang, and John F Oram
September 1993, Biochemical and biophysical research communications,
Yutong Wang, and John F Oram
February 1989, The Biochemical journal,
Yutong Wang, and John F Oram
September 1995, Clinical immunology and immunopathology,
Yutong Wang, and John F Oram
November 1988, Molecular endocrinology (Baltimore, Md.),
Yutong Wang, and John F Oram
April 2018, Biochemical and biophysical research communications,
Yutong Wang, and John F Oram
February 1960, The Journal of biological chemistry,
Yutong Wang, and John F Oram
June 1987, Biochemical and biophysical research communications,
Copied contents to your clipboard!