Localization in yeast mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and/or coenzyme QH2-cytochrome c reductase. 1976

P P Slonimski, and A Tzagoloff

1. Three methods are described for the genetic analysis of yeast cytoplasmic mutants (mit- mutants) lacking cytochrome oxidase or coenzyme QH2-cytochrome c reductase. The procedures permit mutations in mitochondrial DNA to be mapped relative to each other and with respect to drug-resistant markers. The first method is based upon the finding that crosses of mit- mutants with some but not other isonuclear q- mutants lead to the restoration of respiratory functions. Thus a segment of mitochondrial DNA corresponding to a given mit- mutation or to a set of mutations can be delineated. The second method is based on the appearance of wild-type progeny in mit- X mit- crosses. The third one is based on the analysis of various recombinant classes issued from crosses between mit-, drug-sensitive and mit+, drug-resistant mutants. Representative genetic markers of the RIBI, OLII, OLI2 and PAR1 loci were used for this purpose. 2. The three methods when applied to the study of 48 mit- mutants gave coherent results. At least three distinct regions on mitochondrial DNA in which mutations cause loss of functional cytochrome oxidase have been established. A fourth region represented by closely clustered mutants lacking coenzyme QH2-cytochrome c reductase and spectrally detectable cytochrome b has also been studied. 3. The three genetic regions of cytochrome oxidase and the cytochrome b region were localized by the third method on the circular map, in spans of mitochondrial DNA defined by the drug-resistant markers. The results obtained by this method were confirmed by analysis of the crosses between selected mit- mutants and a large number of q- clones whose retained segments of mitochondrial DNA contained various combinations of drug-resistant markers. 4. All the genetic data indicate that the various regions studied are dispersed on the mitochondrial genome and in some instances regions or clusters of closely linked mutations involved in the same respiratory function (cytochrome oxidase) are separated by other regions which code for entirely different functions such as ribosomal RNA.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D003579 Cytochrome Reductases Reductases, Cytochrome
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

P P Slonimski, and A Tzagoloff
May 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
P P Slonimski, and A Tzagoloff
December 1977, Archives internationales de physiologie et de biochimie,
P P Slonimski, and A Tzagoloff
March 2016, Clinical science (London, England : 1979),
P P Slonimski, and A Tzagoloff
May 1962, The Journal of biological chemistry,
Copied contents to your clipboard!