Assembly of the mitochondrial membrane system. Analysis of structural mutants of the yeast coenzyme QH2-cytochrome c reductase complex. 1988

M D Crivellone, and M A Wu, and A Tzagoloff
Department of Biological Sciences, Columbia University, New York, New York 10027.

Coenzyme QH2-cytochrome c reductase is a multisubunit complex of the mitochondrial respiratory chain. Mutants of Saccharomyces cerevisiae with lesions in cytochromes b, c1, the non-heme iron protein, and the noncatalytic subunits have been used to study several aspects of the assembly of the complex. Strains with mutations in single subunits exhibit a variety of different phenotypes. Mutants in the 17-kDa (core 3) subunit grow normally on a nonfermentable substrate indicating that this component is not essential for either enzymatic activity or assembly of the enzyme. Mutations in all the other subunits express a respiratory-deficient phenotype and the absence of detectable enzyme activity. Among the respiratory-defective strains, some have mature cytochrome b (non-heme iron protein and cytochrome c1 mutants), while other mutants lack spectrally detectable cytochrome b and have reduced levels of the apoprotein (mutants in the 44-, 40-, 14-, and 11-kDa core subunits). Mutations in single subunits exert different effects on the concentrations of their partner proteins. These may be summarized as follows: 1) No substantial loss in the 44- or 40-kDa core subunits is seen in single mutants; 2) the concentration of cytochrome c1 is also relatively unaffected by mutations in the other subunits except for the cytochrome b mutant which has 60% of the wild type level of cytochrome c1; 3) all the single mutants have only 15-20% of the normal amount of non-heme iron protein; 4) mutations in the non-heme iron protein have no appreciable effect on the concentrations of the other subunits; 5) mutations in single subunits cause parallel decreases in the concentrations of cytochrome b, the 14-, and the 11-kDa subunits. These results indicate that the synthesis or stability of a subset of subunits depends on the presence of other subunit polypeptides of the complex. At present we favor the idea that the observed changes in the concentrations of some subunits are due to higher turnover rates of the proteins in a partially assembled complex. Based on the mutant phenotypes, a tentative model for the assembly of coenzyme QH2-cytochrome c reductase is proposed. According to this model it is envisioned that the subunits interact with one another in the lipid bilayer. Maturation of apocytochrome b occurs after it is assembled with the nonstructural subunits to form a core structure. This intermediate complex interacts with the non-heme iron protein to form the active holoenzyme.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

M D Crivellone, and M A Wu, and A Tzagoloff
May 1962, The Journal of biological chemistry,
M D Crivellone, and M A Wu, and A Tzagoloff
July 1989, The Journal of biological chemistry,
M D Crivellone, and M A Wu, and A Tzagoloff
December 1977, Archives internationales de physiologie et de biochimie,
M D Crivellone, and M A Wu, and A Tzagoloff
April 1967, Acta medicinae Okayama,
M D Crivellone, and M A Wu, and A Tzagoloff
September 1979, The Journal of biological chemistry,
Copied contents to your clipboard!