Skeletal muscle is a major site of lactate uptake and release during hyperinsulinemia. 1992

A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
Department of Medicine, University of Pittsburgh School of Medicine, PA.

During conditions of increased glucose disposal, plasma lactate concentrations increase due to an increase in plasma lactate appearance. The tissue sites of the elevated lactate production are controversial. Although skeletal muscle would be a logical source of this lactate, studies using the limb net balance technique have failed to demonstrate a major change in net lactate output when plasma glucose disposal is increased. Because the limb balance technique underestimates production of a substrate when the limb not only produces but also consumes that substrate, we infused 3-14C-lactate basally and during a hyperinsulinemic euglycemic clamp in seven normal volunteers to determine plasma lactate appearance, forearm lactate fractional extraction, and forearm lactate uptake and release. After 3 hours of hyperinsulinemia, glucose and lactate turnovers increased from basal values of 11.8 +/- 0.13 and 12.2 +/- 0.59 to 32.6 +/- 3.4 and 16.5 +/- 1.07 mumol/(min.kg), accompanied by an increase in plasma lactate from 0.88 +/- 0.07 to 1.16 +/- 0.09 mmol/L (P less than .05). Forearm lactate extraction increased from 27% +/- 2% to 38% +/- 2% (P less than .001), resulting in an increase in forearm lactate uptake from 0.65 +/- 0.09 to 1.18 +/- 0.08 mumol/(min.100 mL tissue) (P less than .001). Although forearm lactate net output decreased during hyperinsulinemia, forearm lactate production increased from 1.04 +/- 0.12 basally to 1.69 +/- 0.13 mumol/(min.100 mL). When forearm data was extrapolated to whole body, muscle could account for 41% +/- 4% of systemic lactate appearance basally and 45% +/- 4% during hyperinsulinemia.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D005542 Forearm Part of the upper extremity in humans and primates extending from the ELBOW to the WRIST. Antebrachium,Antebrachiums,Forearms
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006946 Hyperinsulinism A syndrome with excessively high INSULIN levels in the BLOOD. It may cause HYPOGLYCEMIA. Etiology of hyperinsulinism varies, including hypersecretion of a beta cell tumor (INSULINOMA); autoantibodies against insulin (INSULIN ANTIBODIES); defective insulin receptor (INSULIN RESISTANCE); or overuse of exogenous insulin or HYPOGLYCEMIC AGENTS. Compensatory Hyperinsulinemia,Endogenous Hyperinsulinism,Exogenous Hyperinsulinism,Hyperinsulinemia,Hyperinsulinemia, Compensatory,Hyperinsulinism, Endogenous,Hyperinsulinism, Exogenous
D015309 Glucose Clamp Technique Maintenance of a constant blood glucose level by perfusion or infusion with glucose or insulin. It is used for the study of metabolic rates (e.g., in glucose, lipid, amino acid metabolism) at constant glucose concentration. Euglycemic Clamping,Glucose Clamping,Euglycaemic Clamp,Euglycaemic Clamping,Euglycemic Clamp,Glucose Clamp,Glucose Clamp Technic,Clamp, Euglycaemic,Clamp, Euglycemic,Clamp, Glucose,Clamping, Euglycaemic,Clamping, Euglycemic,Clamping, Glucose,Clamps, Euglycaemic,Clamps, Euglycemic,Clamps, Glucose,Euglycaemic Clamps,Euglycemic Clamps,Glucose Clamp Technics,Glucose Clamp Techniques,Glucose Clamps,Technic, Glucose Clamp,Technics, Glucose Clamp,Technique, Glucose Clamp,Techniques, Glucose Clamp

Related Publications

A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
February 1986, Journal of applied physiology (Bethesda, Md. : 1985),
A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
January 1989, Exercise and sport sciences reviews,
A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
March 1978, Journal of applied physiology: respiratory, environmental and exercise physiology,
A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
August 1991, Journal of applied physiology (Bethesda, Md. : 1985),
A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
December 2001, The Journal of experimental biology,
A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
November 1980, The American journal of physiology,
A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
April 1994, The American journal of physiology,
A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
August 2005, Physiology (Bethesda, Md.),
A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
March 1991, Acta physiologica Scandinavica,
A Consoli, and N Nurjahan, and J E Gerich, and L J Mandarino
August 2013, American journal of physiology. Endocrinology and metabolism,
Copied contents to your clipboard!