Skeletal muscle lactate release and glycolytic intermediates during hypercapnia. 1986

T E Graham, and J K Barclay, and B A Wilson

The effects of respiratory acidosis on glycolysis in the autoperfused canine gastrocnemius-plantaris were studied using anesthetized dogs that were ventilated either with air (n = 30) or with 4% CO2-21% O2-75% N2 (n = 30). The left muscle group was stimulated at 3 Hz for up to 20 min, after which the active and the contralateral resting muscles were removed and frozen in liquid N2. Blood flow, VO2, Vco2, and tension development were unaffected by CO2. Glycogen catabolism was not affected, but lactate release (La) was lower (P less than 0.05) during activity with CO2; and greater fructose 6-phosphate, fructose 6-phosphate/fructose 1,6-diphosphate, and alpha-glycerophosphate/dihydroxyacetone phosphate ratios resulted (P less than 0.05). With respiratory acidosis, muscle lactate tended to accumulate early in contractions, but a net lactate uptake occurred during the last 10 min of contractions. Thus, respiratory acidosis reduced lactate efflux and there was a net uptake late in the contraction period. Glycogen phosphorylase did not appear to be affected by the respiratory acidosis, but there was evidence of inhibition at the phosphofructokinase step as well as a tendency for lactate to accumulate within the muscle. La often occurred in a direction contrary to the muscle-venous lactate concentration difference with either air or CO2 and La also decreased far more rapidly over time than did the arterial-venous H+.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010732 Phosphofructokinase-1 An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues. 6-Phosphofructokinase,6-Phosphofructo-1-kinase,Fructose-6-P 1-Kinase,Fructose-6-phosphate 1-Phosphotransferase,6 Phosphofructokinase,Phosphofructokinase 1
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof

Related Publications

T E Graham, and J K Barclay, and B A Wilson
May 1980, Biokhimiia (Moscow, Russia),
T E Graham, and J K Barclay, and B A Wilson
March 1978, Journal of applied physiology: respiratory, environmental and exercise physiology,
T E Graham, and J K Barclay, and B A Wilson
September 1976, The American journal of physiology,
T E Graham, and J K Barclay, and B A Wilson
February 1992, Metabolism: clinical and experimental,
T E Graham, and J K Barclay, and B A Wilson
January 1980, Hormone and metabolic research. Supplement series,
T E Graham, and J K Barclay, and B A Wilson
January 1986, Advances in experimental medicine and biology,
T E Graham, and J K Barclay, and B A Wilson
July 1991, The American journal of physiology,
T E Graham, and J K Barclay, and B A Wilson
March 1981, Pflugers Archiv : European journal of physiology,
T E Graham, and J K Barclay, and B A Wilson
January 1979, Bulletin europeen de physiopathologie respiratoire,
Copied contents to your clipboard!