Basal and angiotensin II-inhibited neuronal delayed-rectifier K+ current are regulated by thioredoxin. 2007

Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
Dept. of Physiology and Functional Genomics, College of Medicine, University of Florida, Box 100274, 1600 SW Archer Rd., Gainesville, FL 32610-0274, USA.

In previous studies, we determined that macrophage migration inhibitory factor (MIF), acting intracellularly via its intrinsic thiol-protein oxidoreductase (TPOR) activity, stimulates basal neuronal delayed-rectifier K(+) current (I(Kv)) and inhibits basal and angiotensin (ANG) II-induced increases in neuronal activity. These findings are the basis for our hypothesis that MIF is a negative regulator of ANG II actions in neurons. MIF has recently been recategorized as a member of the thioredoxin (Trx) superfamily of small proteins. In the present study we have examined whether Trx influences basal and ANG II-modulated I(Kv) in an effort to determine whether the Trx superfamily can exert a general regulatory influence over neuronal activity and the actions of ANG II. Intracellular application of Trx (0.8-80 nM) into rat hypothalamic/brain stem neurons in culture increased neuronal I(Kv), as measured by voltage-clamp recordings. This effect of Trx was abolished in the presence of the TPOR inhibitor PMX 464 (800 nM). Furthermore, the mutant protein recombinant human C32S/C35S-Trx, which lacks TPOR activity, failed to alter neuronal I(Kv). Trx applied at a concentration (0.08 nM) that does not alter basal I(Kv) abolished the inhibition of neuronal I(Kv) produced by ANG II (100 nM). Given our observation that ANG II increases Trx levels in neuronal cultures, it is possible that Trx (like MIF) has a negative regulatory role over basal and ANG II-stimulated neuronal activity via modulation of I(Kv). Moreover, these data suggest that TPOR may be a general mechanism for negatively regulating neuronal activity.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011490 Protein Disulfide Reductase (Glutathione) An enzyme that catalyzes the reduction of a protein-disulfide in the presence of glutathione, forming a protein-dithiol. Insulin is one of its substrates. EC 1.8.4.2. Glutathione Insulin Transhydrogenase,Glutathione Protein Disulfide Oxidoreductase,Thiol-Disulfide Oxidoreductase,Thiol-Protein Disulfide Oxidoreductase,Disulfide Oxidoreductase, Thiol-Protein,Insulin Transhydrogenase, Glutathione,Oxidoreductase, Thiol-Disulfide,Oxidoreductase, Thiol-Protein Disulfide,Thiol Disulfide Oxidoreductase,Thiol Protein Disulfide Oxidoreductase,Transhydrogenase, Glutathione Insulin
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003512 Cyclohexanones Cyclohexane ring substituted by one or more ketones in any position.
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
November 2000, Journal of neurophysiology,
Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
July 2007, Journal of neurophysiology,
Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
February 2006, Journal of neurophysiology,
Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
September 1999, Journal of neurophysiology,
Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
January 1995, The American journal of physiology,
Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
November 2009, Glia,
Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
October 2003, Biochemical and biophysical research communications,
Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
September 1996, The Journal of physiology,
Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
July 2001, American journal of physiology. Cell physiology,
Tomokazu Matsuura, and Rachael A Harrison, and Andrew D Westwell, and Hajime Nakamura, and Anatoly E Martynyuk, and Colin Sumners
November 1996, The Journal of membrane biology,
Copied contents to your clipboard!